
The Call-by-Need Lambda Calculus

John Maraist, Martin Odersky
School of Computer and Information Science, University of South Australia

Warrendi Road, The Levels, Adelaide, South Australia 5095fmaraist,oderskyg@cis.unisa.edu.au

Philip Wadler
Bell Laboratories, Lucent Technologies

700 Mountain Ave., Room 2T-304, Murray Hill, New Jersey 07974-0636
wadler@research.bell-labs.com

Appears in theJournal of Functional Programming8:3 (May 1998).

Abstract

We present a calculus that captures the operational semantics of call-by-need. The call-by-need
lambda calculus is confluent, has a notion of standard reduction, and entails the same observational
equivalence relation as the call-by-name calculus. The system can be formulated with or without
explicit let bindings, admits useful notions of marking and developments, and has a straightforward
operational interpretation.

Introduction

The correspondence between call-by-value lambda calculi and strict functionallanguages
(such as the pure subset of Standard ML) is quite good; the correspondence between call-
by-name lambda calculi and lazy functional languages (such as Miranda or Haskell) is
not so good. Call-by-name re-evaluates an argument each time it is used, a prohibitive
expense. Thus, many lazy languages are implemented using thecall-by-needmechanism
proposed by Wadsworth (1971), which overwrites an argument with its value the first time
it is evaluated, avoiding the need for any subsequent re-evaluation (Turner, 1979; Johnsson,
1984; Koopman and Lee, 1989; Peyton Jones, 1992).

Call-by-need reduction implements the observational behaviour of call-by-name in a
way that requires no more substitution steps than call-by-value reduction. It seems to give
us something for nothing — the rich equational theory of call-by-name without the over-
head incurred by re-evaluating arguments. Yet the resulting gap between the conceptual
and the implementation calculi can be dangerous since it might lead to programtransfor-
mations that drastically increase the complexity of lazy functional programs. In practice,
this discrepancy is dealt with in anad hocmanner. One uses the laws of the call-by-name
lambda calculus as support that the transformations do not alter the meaning of a program,
and one uses informal reasoning to ensure that the transformations do not increase the cost
of execution.

1

However, the reasoning required is more subtle than it may at first appear.For example,
in the term let x = 1 + 2in let f = �y:x+ yin f y + f y
the variablex appears textually only once, but substituting1 + 2 for x in the body of thelet will cause1 + 2 to be computed twice rather than once.

Underestimating the difficulty of this problem can be quite hazardous inpractice. The
Glasgow Haskell Compiler is written in Haskell, is self-compiled, and makes extensive
use of program transformations. In one version of the compiler, onesuch transformation
inadvertently introduced a loss of sharing, causing the symbol table to be rebuilteach time
an identifier was looked up. The bug was subtle enough that it was not caughtuntil profiling
tools later pinpointed the cause of the slowdown (Sansom and Peyton Jones, 1995).

In this paper we present the call-by-need lambda calculus�need. We write “call-by-
need” rather than “lazy” to avoid a name clash with the work of Abramsky (1990), which
describes call-by-name reduction to weak head-normal form. We present our calculus in
Section 2, after a review of the call-by-name and call-by-value calculi in Section 1.

The basic syntactic properties of�need are quite satisfying. Reduction in�need admits an
interesting variation of the usual marking of redexes, which in turn gives the properties of
finite developments and unique completions. While somewhat technical,these properties
are very interesting from the point of view of reduction semantics, and make the proofs
of the other results much easier and more systematic. Reduction in�need is confluent:
reduction rules may be applied to any part of a term, including under a lambda, and regard-
less of order the same normal form will be reached. Confluence is valuable for modelling
program transformations. We also have a notion of standard evaluation: a computable,
deterministic strategy for choosing redexes which will terminate whenever any reduction
sequence leads to a member of a natural class of answers. This property is valuable for
modelling computation. We discuss all of these properties in Section 3.Call-by-need is
observationally equivalent to call-by-name, where the notion of observation is taken to be
reducibility to weak head-normal form, as in the lazy lambda calculus of Abramsky (1990)
and Ong (1988). A corollary is that Abramsky and Ong’s models are also sound and ad-
equate for our calculus. We give the details of the relationship between call-by-name and
call-by-need in Section 4. Our calculus is the only one which we know to satisfy all of
these properties without considerably sacrificing simplicity.

Our formulation of call-by-need can also be given a natural semantics, similar to the one
proposed for the lazy lambda calculus by Launchbury (1993), as we show inSection 5.
There is a close correspondence between our natural semantics and our standard reduction
scheme. In Section 6 we show that one can formulate�need with or without the use of alet construct. The reduction rules appear more intuitive if alet construct is used, but an
equivalent calculus can be formed without bindings, simply taking(let x = M in N) and(�x:N)M to be indistinguishable.

We consider some of the more common extensions to basic lambda calculi in Section 7.
Finally, in Section 8 we consider the relationship of our calculus to a number of other sys-
tems and concerns. In particular, we consider other formulations of call-by-need reduction,

2

Syntactic Domains

Variables x; y; z
Values V;W ::= x j �x:M
Terms L;M;N ::= V j M N
Evaluation contexts E ::= [] j E M

Reduction Rule (�) (�x:M)N ! M [x := N]
Fig. 1. The call-by-name lambda calculus.

Syntactic Domains

Variables, values, terms As for call-by-name
Evaluation contexts E ::= [] j E M j (�x:M) E

Reduction Rule (�V) (�x:M) V ! M [x := V]
Fig. 2. The call-by-value lambda calculus.

and stronger notions of reduction such as full laziness and optimal reduction. We also dis-
cuss other variations on the basic�-reduction rule, the relationship to classical and linear
logics, and garbage collection. Probably the most serious drawback of oursystem is the
lack of a good model for recursion; we include a discussion of work by other researchers
on including recursive bindings.

1 The call-by-name and call-by-value calculi

Figures 1 and 2 review the call-by-name and call-by-value lambda calculi. Both calculi
concern classical lambda terms: applications, abstractions and variables. A contextC[] is
a term with a single hole[] in it. By C[M] we denote the term that results from replacing
the hole inC[] with M .

The call-by-name calculus (Church, 1941) consists of a single reduction rule,�, which
describes the simplification of the application of an abstraction to an arbitrary argument.
We define the reduction relation���!(�) to be thecompatibleclosure of� under arbitrary

contexts, and���!(�)! to be the reflexive, transitive closure of���!(�) . We writeM 7���!(�) N
to mean that we haveM � E[�0], N � E[�1] and h�0;�1i 2 �, with 7���!(�)! as the

reflexive, transitive closure of7���!(�) .

The call-by-value calculus (Plotkin, 1975) also consists of a single axiom, �V , which
is like � except that applications are contracted only when the argument is a value. We
use the same notation for the relations derived from�V as for those derived from�, and
summarise the general notation below.

Notation. Throughout this article we use the following notational conventions, largely fol-
lowing Barendregt (1981). We use fv(M) to denote the free identifiers in a termM . A
term isclosedif fv (M) = ;. We useM � N for syntactic equality of terms (modulo�-
renaming) and reserveM = N for convertibility by the symmetric closure of reduction (or

3

for exampleM name= N to specify the particular reduction axioms). Following Barendregt,
we work with equivalence classes of�-renameable terms. To avoid name capture problems
in substitutions we assume that the bound and free identifiers of a representative term and
all its subterms are always distinct. We say that a reduction relationR is confluentif for allM0;M1;M2 such that M0 ���!(R)! M1 andM0 ���!(R)! M2
we have someN such thatM1 ���!(R)! N andM2 ���!(R)! N . ReductionR is strongly nor-

malisingif no infiniteR-reduction sequence exists.

Developments and their finiteness.In the results that follow we will make use of the notion
of call-by-name developments, which we recall presently. The idea is to track individual
redexes as others are contracted. We can identify redexes by their location within a term
via paths, strings of symbols which indicate how one “navigates” from the top level of
a term into its subterms. We use symbols@1;@2; �1 respectively to indicate the left and
right subterms of an application and the body of an abstraction. We let; � range over
paths andF ;G range over sets of paths, writing(M;F) suggesting that paths inF index
subterms ofM which are top-level redexes. We also writeM ��! N where the term inM
indexed by is the top-level redex which, when contracted, transformsM into N . This
association of terms with sets of paths is intuitive, but unfortunately reduction rules for sets
of paths are rather complicated. One generally moves freely back and forth between pairs
of a term plus a set of paths on the one hand, and terms where certain redexes are indicated
directly in the writing of the term on the other hand. Barendregt justifies the equivalence
of the two formulations (1981, Chapter 11). We present the syntax andreduction rules of
the marked call-by-name calculus�0name in Figure 3. We use the same metanotation for
marked terms as for unmarked terms, except with a tick0 after the letter: hence marked
termsL0;M 0; N 0 and marked valuesV 0. A developmentis a reduction sequence which
contracts only marked redexes, that is, only(�0) steps. Acompletedevelopment is one
which ends in an unmarked term. We write�1 : M 01 ���!dev N 01�2 : M 02 ���!dev! N 02
to indicate that the single-step reduction sequence�1 and multi-step sequence�2 contract-
ing marked termsM 0i toN 0i are developments, and� :M 0 ���!cpl N
to indicate that a development� is complete.

Example 1

LetM 0 � �(�x: y x x) (�(�z: z) u). We have two one-step developments ofM 0, namely�1 :M 0 ���!dev y (�(�z: z) u) (�(�z: z) u)� ((y ((�z: z) u) ((�z: z) u)) ; f@2;@1@2g)
4

Syntactic Domains

Variables x; y; z
Values V 0;W 0 ::= x j �x:M 0
Terms L0;M 0; N 0 ::= V 0 j M 0 N 0 j �(�x:M 0) N 0

Reduction Rules (�0) �(�x:M)N ! M [x := N](�1) (�x:M)N ! M [x := N]
Fig. 3. The marked call-by-name lambda calculus�0name.

Syntactic Domains

Variables x; y; z
Values V;W ::= x j �x:M
Terms L;M;N ::= V j M N j let x =M inN

Reduction Rules(I) (�x:M) N ! let x = N inM(V) let x = V in C[x] ! let x = V in C[V](C) (let x = L inM) N ! let x = L inM N(A) let y = (let x = L in M) inN ! let x = L in let y =M inN(G) let x = M inN ! N if x 62 fv(N)
Fig. 4. The call-by-need�-calculus�need.

and �2 :M 0 ���!dev �(�x: y x x) u� ((�x: y x x) u; f�g) :
Both of these developments, when completed, end in the same term:M 0 ���!cpl y u u :
Since developments coincide with(�0)-reduction, which is strongly normalising and con-
fluent, we have the following result:

Proposition 1
(Barendregt, 1981, Theorem 11.2.25) All call-by-name developments are finite, all can be
extended to a complete development, and all complete developments with the same origin
end in the same term.

2 The call-by-need calculus

Figure 4 details the call-by-need calculus,�need. We augment the term syntax of the�-
calculus with alet-construct. The underlying idea is to represent a reference to a node in a
graph by alet-bound identifier. Hence, sharing in a graph corresponds to naming in a term.

The second half of Figure 4 presents reduction rules forneed.

5

� Rule(I), “introduction,” introduces alet binding from an application. Given an ap-
plication (�x:M) N , a reducer should construct a copy of the bodyM where all
occurrences ofx are replaced by a reference to a single occurrence of the graph ofN . Rule (I) models this behaviour by representing the reference with alet-bound
name.� Rule (V), “value,” substitutes a value for one occurrence of a let-bound variable;
hence it expresses dereferencing. Note that since only values are copied, thereis no
risk of duplicating work in the form of reductions that should havebeen made to a
single, shared expression.� Rule (C), “commute,” allowslet-bindings to commute with applications, and thus
pulls alet-binding out of the function part of an application.� Rule (A), “associate,” transforms left-nestedlet’s into right-nestedlet’s. It is a di-
rected version of the associativity law for the call-by-name monad (Moggi, 1991).� Rule(G), “garbage collection,” drops alet-binding whose defined variable no longer
appears in the term. Rule(G) is not strictly needed for evaluation (as seen in Sec-
tion 3 where we discuss standard reduction), but it helps to keep terms shorter.

Clearly, these rules never duplicate a term which is not a value. Furthermore, we will show
in Section 4.2 that a term evaluates to an answer in our calculus if and only if it evaluates
to an answer in the call-by-name�-calculus. Soneed fulfills the expectations for what a
call-by-need reduction scheme should provide: no loss of sharing except inside values, and
observational equivalence to the classical call-by-name calculus.

Definition 2 (Call-by-need reduction)

Let ! be the smallest relation that contains(I; V; C;A;G) and that is closed under the
implicationM ! N) C[M] ! C[N]. As for call-by-name and call-by-value, we
write reduction in a single step as! and in zero or more steps as!!. To distinguish
call-by-need from (say) call-by-name reduction, we write����!need and����!name . To express
reduction according to particular individual rules in a system, we will specify the rules
similarly, as in��!� and���!(I) . We will omit subscripts whenever the context is clear. We

will often omit the Greek letter lambda to reduce clutter, and write (for example)NEED to
refer to either the reduction theory�need or the collection of terms�need.

Example 2

Consider the reduction of the term(�x:x x) (�y:y):(�x:x x) (�y:y) ���!(I) let x = �y:yin x x ���!(V) let x = �y:yin (�z:z) x���!(I) let x = �y:yin let z = xin z ���!(V) let x = �y:yin let z = xin x���!(V) let x = �y:yin let z = xin �y:y ���!(G) 2 �y:y
6

x x@ @?�x �yy� A @� ���!(I) y�yx : � x : �@?@ �� @ ���!(V) z�z y�yx : �@?� @
���!(I) y�yx : �z : �? ���!(V) y�yx : �?z : �
���!(V) y�y?x : �z : � ���!(G) 2 y�y?

Fig. 5. Graphical rendering of Example 2.

Graphically, we have the sequence shown in Figure 5, where we mark the node currently
considered the root of the graph with a star (?).

The call-by-need calculus enjoys a number of properties which we summarisepresently
and detail over the next few sections.� The notion of a marked redex can be adapted to call-by-need, and the resultingno-

tion of developments has the same useful results as in call-by-name and value: all
developments are finite, all can be extended to complete developments, and allcom-
plete developments of a given term and marking end in the same term. We formalise
the notion of a call-by-need marking and verify these results in Section 3.1.� The call-by-need calculus is confluent. As in the call-by-name and value systems,
this result follows rather easily from the results on developments, aswe show in
Section 3.2.� An answeris a reduction-closed set of terms that we select as an acceptable end
result of a reduction sequence. In call-by-name and value one usually takes abstrac-
tions as answers; here we admit an abstraction under let-bindings as well. Astan-
dard reduction sequence is a subset of a reduction relation with three properties.
First, every term may have at most one standard redex. Second, no answer mayhave
a standard redex. Finally, whenever there is a reduction sequence from a termM to
some answer, there is also a standard reduction sequence fromM to an answer. We
identify a standard strategy for selecting call-by-need redexes and show that it has
these properties in Section 3.3.� We express the correspondence between call-by-name and call-by-need in terms of
observational equivalences, a sort of black-box testing. We make this black-box test

7

by wrapping both terms in the same context, and checking whether each wrapped
term reduces to an answer, orconverges. If the two terms exhibit the same behaviour
(i.e. both converge, or both fail to converge) in every fixed situation, then we take
the terms to be observationally equivalent. Then the relationship we show in Sec-
tion 4 between call-by-name and call-by-need is that their theories of observational
equivalence are exactly the same.

3 Syntactic issues

Lambda calculi have a number of syntactic properties that are useful in modelling pro-
gramming languages, as has been demonstrated by their great success in modellingAlgol,
Iswim, and a host of successor languages. We discuss a number of these properties in this
section. Section 3.1 concerns call-by-need developments and their finiteness.In Section 3.2
we discuss confluence. The confluence property set forth in the Church-Rosser theorem
guarantees that reduction steps may occur in any order without changing the eventual fi-
nal result, providing a simple model of program transformation and compiler optimisation.
We discuss evaluation of call-by-need terms in Section 3.3, giving an evaluation order that
contracts only one redex at a time, arriving in finitely many steps at an answerwhenever
possible. 3.1 Marked reduction and developments
We begin with a survey of some technical properties which are central to our proofs of
confluence and standardisation, and which will also be useful in the correspondence re-
sults. The material of this section is relevant to the reduction theory of call-by-need, and
is important for the results of later sections, which are arguably of more general interest.
However, the reader who is less interested in those details can safely skip this section, and
proceed to Section 3.2.

It is useful to track certain redexes as we contract others. To this end wemark redexes
with tags to distinguish them from other, unmarked redexes. We track(I; V; C;A) redexes
through reduction sequences with the marked call-by-need calculusneed0 of Figures 6
and 7; we do not mark(G) redexes. This marked system differs in two distinct ways from
more traditional marked systems such as the marked call-by-name calculus.

The first difference allows us to mark(V) steps, many of which could arise from a single
let-binding. Rather than mark the binding, we mark the variable whoseoccurrence is to be
replaced with the bound value. Since we mark variables rather than terms, we must place a
restriction on let-bindings where variables are actually marked: in such bindings, the bound
term must be a value. That is, in a termM ,M � let x =M0 inM1 ;
if we have an occurrence ofVx within M1, thenM0 must be a value. Equivalently, we
might mark the binding rather than the variables, and associate with the marking the subset
of variables which marked reduction would replace; for the summary of these proofs which
we present here, the marking of variables is simpler. We denote the set of variables which

8

Syntax

Values V 0;W 0 ::= x j Vx j �x:M 0
Terms L0;M 0; N 0 ::= V 0 j M 0 N 0 j let x =M 0 inN 0j I(�x:M 0) N 0j An let x = P 0n M 0 inN 0j Cn(P 0n M 0) N 0

where in a termlet x =M 0 inN 0,
if x 2 mv(N 0)
thenM 0 is a value.

PrefixesP 0; R0 ::= let x =M 0 in j An let x = P 0n M 0 in
Trivial structural equivalencesA0 let x =M 0 inN 0 � let x =M 0 inN 0C0(M 0 N 0) � M 0 N 0

Top-level contraction(I0) I(�x:M 0) N 0 ! let x = N 0 inM 0(I1) (�x:M 0) N 0 ! let x = N 0 inM 0(V0) let x = V 0 in C0[Vx] ! let x = V 0 in C0[V 0](V1) let x = V 0 in C0[x] ! let x = V 0 in C0[V 0](C0) Cn+1(P 0 R0n M 0) N 0 ! P 0 (Cn(R0n M 0) N 0) n � 0(C1) (P 0 M 0) N 0 ! P 0 (M 0 N 0)(A0) An+1 let x = (P 0 R0n M 0) inN 0 ! P 0 (An let x = (R0n M 0) inN 0)(A1) let x = (P 0 M 0) inN 0 ! P 0 (let x =M 0 inN 0)(G1) let x =M 0 inN 0 ! N 0 x 62 fv(N 0)
Fig. 6. Syntax and reduction axioms of the marked call-by-need calculusneed0.

occur marked in a termM by mv(M), and refer to a marked(V) redex to mean a let-
binding of a variable to some variablex where at least one occurrence ofx is marked.

The second variation from simpler marked systems is our treatment of the(C;A) rules.
Rather than single steps, for these rules we will mark consecutive sequencesof redexes:
for example we may have two(C) steps which arise from the same binding, although only
one is contractable initially:(let x1 = L1 in let x2 = L2 in M) N! let x1 = L1 in ((let x2 = L2 in M) N)! let x1 = L1 in let x2 = L2 in (M N) :
In the marked calculus, we allow both of these bindings to be marked at thesame time,
distinguishing the number of bindings to be moved at any point:C2(let x1 = L1 in let x2 = L2 inM) N! let x1 = L1 in C1(let x2 = L2 inM) N! let x1 = L1 in let x2 = L2 in (M N) :
This extension of simple marks will also require a variation from the usual, rather simple

9

Compatible closure M 0 ! N 0�x:M 0 ! �x:N 0M 0 ! N 0L0 M 0 ! L0 N 0 M 0 ! N 0M 0 L0 ! N 0 L0M 0 ! N 0I(�x:L0)M 0 !I (�x:L0) N 0 M 0 ! N 0I(�x:M 0) L0 !I (�x:N 0) L0M 0 ! N 0CnL0 M 0 !Cn L0 N 0 � : M 0 ! N 0CnM 0 L0 !Cn+d(j�j;n) N 0 L0M 0 ! N 0let x = L0 inM 0 ! let x = L0 inN 0 M 0 ! N 0let x = M 0 in L0 ! let x = N 0 in L0M 0 ! N 0An let x = L0 inM 0 !An let x = L0 inN 0� : M 0 ! N 0An let x =M 0 in L0 !An+d(j�j;n) let x = N 0 in L0
Displacement functiond(let x = (let y = L inM) inN! let y = L in let x =M inN ;n) = 1; if n > 0.d(let x =M inN ! N;n) = �1; if n > 0.d(let x = L inM ! let x = L inN;n) = d(M ! N;n� 1); if n > 0.d(M ! N;n) = 0 ; otherwise

Fig. 7. Compatible closure of markedneed reduction.

notion of compatible closure. Consider the termC1(let x = (let y = L inM) in N0) N1 ;
which has an unmarked(A) redex at position@1. If this redex is contracted before the
marked top-level step, we must adjust the counter associated with the marker to reflect the
“new” binding separatingN0 andN1:C1(let x = (let y = L inM) inN0) N1! C2(let y = L in let x =M in N0) N1 :
Were we to leave the counter unadjusted, we would lose confluence of markedreduction,
and hence the uniqueness of complete developments as well.

We mark redexes with the four marksI, V, Cm andAn , wherem;n are positive inte-
gers, each mark corresponding to the rule of the given name. We use the samemetanotation
for marked call-by-need terms as for marked call-by-name terms. In addition it is conve-
nient to letP 0 range over the various marked let-bindings, and let (say)P 0n range overn
consecutive productions (not necessarily identical) ofP 0.

The top-level rules forneed0 reduction are as usual with rules subscripted 0 contracting
marked steps, and rules subscripted 1 contracting unmarked steps. We takeneed00 andneed01 steps to refer to contraction by any of those respective sets of rules. For compatible

10

closure we use thedisplacementfunctiond on unmarkedneed sequences and integers.
Intuitively,d returns the number of top-level let-bindings which are introduced orremoved
by a reduction sequence, where the firstn nested let-bindings are considered top-level. This
added complication in the definition of compatible closure allows markedneed00 reduction
to be confluent.

Confluence of the marked subset is somewhat surprising, as simply marking single re-
dexes alone (i.e., without the numeric subscripts) is insufficient for the uniqueness result.
Consider a term with two such marked(A) steps,Alet x = (Alet y = (let z =M0 in M1) inM2) inM3 :
If we contract the outer redex first and inner redex second, we have one complete develop-
ment: Alet x = (Alet y = (let z =M0 in M1) in M2) inM3! Alet y = (let z =M0 inM1) in (let x =M2 in M3)! let z =M0 in let y =M1 in let x =M2 inM3 :
But if we contract the inner redex first, we have another complete development with a
different ending: Alet x = (Alet y = (let z =M0 in M1) in M2) inM3! Alet x = (let z =M0 in let y =M1 in M2) inM3! let z =M0 in let x = (let y =M1 in M2) in M3 :
We have a similar problem for an(A) contraction occurring at the binding of a(C) step. In�0need we resolve the difficulty by adding a positive integer to(C;A) markings, indicating
how many prefixes should be moved, and defining residuals to consider prefixes added or
removed by other steps. So in the second sequence above, we will have:A1 let x = (A1 let y = (let z =M0 inM1) inM2) in M3! A2 let x = (let z =M0 in let y =M1 in M2) inM3! let z =M0 in A1 let x = (let y =M1 in M2) inM3! let z =M0 in let y =M1 in let x =M2 in M3 ;
which does end with the same term as the first complete development.

Once again we can move freely between marked terms and sets of paths, with the addi-
tional symbols̀1; `2 indexing respectively the left and right subchildren of a let-binding. In
other words, in a termlet x = M in N , on the path̀1 we indexM , and with`2 we indexN . We continue with the notationM ��! N to index top-level redexes under compatible
closure, and writejM 0j to refer to the underlying unmarked term; ifM 0 � (M;F) then
we havejM 0j �M . Similarly, given a marked reduction sequence�0, we refer to the pro-
jectionj�0j to mean the reduction sequence between the respective projections. Finally, we
write � for a zero-length path string of no symbols.

Having established the notion of marking, we can defineresiduals. For a reduction se-
quence� : M !! N and a markingF of M , we define the residuals ofF with respect to

11

� — in symbols we writeF=� — to be the set of residualsG such that�0 : (M;F)!! (N;G)
wherej�0j � �. Developments are as before: a development of a termM and markingF
is a reduction sequence beginning from(M;F) which contracts only marked redexes, and
a complete development is one which ends in an unmarked term. We write���!dev and���!cpl
as before.

Example 3
LetM 0 � (M;F) � A1 let x = (A1 let y = (let z =M0 in M1) in M2) in M3. There are
two single-step developments ofM 0, namely�0 : M 0 ���!dev A1 let y = (let z =M0 inM1) in (let x =M2 in M3)
and �1 :M 0 ���!dev A2 let x = (let z =M0 in (let y =M1 in M2)) in M3 :
We haveF=�0 = f(�; 1)g, andF=�1 = f(�; 2)g. Assuming that theMi are unmarked, we
have one complete development ofM 0,M 0 ���!cpl let z =M0 in (let y =M1 in (let x =M2 in M3)) :
The main result onneed-developments is the following theorem:

Theorem 3
All �need developments are finite, and can be extended to a complete development. More-
over, all complete developments of a particular term and marking end in the same term.

Proof
As before, finiteness of developments is equivalent to strong normalisation of marked re-
ductionneed00. The technique is standard, based on a positive integer measure of a deco-
ration of marked terms which is decreased by reduction. We give only a summary of the
proof; full details are available elsewhere (Maraist, 1997).

We construct weighted terms by giving every variable occurrencex or Vx a weightof
some positive integer, writtenxi or Vxi. We let _M; _N and so forth range over weighted
terms, _V range over weighted values, and define the normk : k on weighted terms (ignoring
marks) as follows: kxik = ik�x: _Mk = k _Mkklet x = _M in _Nk = 2k _Mk+ k _Nkk _M _Nk = 2k _Mk+ 2k _Nk
A term is said to havedecreasing weightingif it satisfies the appropriate condition below
based on its form.� All termsxi orVxi have decreasing weighting.� A term�x: _M has a decreasing weighting if_M has a decreasing weighting.� A term I(�x: _M) _N has decreasing weighting if:

1. Both _M and _N have decreasing weighting.

12

2. For allxi orVxi in _M , we havei > k _Nk.� Other applications(_M _N) or Cn(_M _N) have decreasing weighting if both_M and_N have decreasing weighting.� A (V)-marked binding(let x = _V in _M) has decreasing weighting if:

1. Both _V and _M have decreasing weighting.
2. For allVxi in _M , we havei > k _V k.� Other bindings(let x = _M in _N) orAn(let x = _M in _N) have decreasing weighting
if both _M and _N have decreasing weighting.

We lift marked reduction to weighted terms by just applying the same rules without re-
gard for weights. Decreasing weightings have two key properties, bothof which can be
shown by a straightforward structural induction. LetM have decreasing weighting, and let_M �����!need00 _N . Then:

1. k _Mk > k _Nk, and
2. _N has decreasing weighting.

Moreover, every term has a decreasing weighting. To construct a decreasing weighting for
an arbitrary term, we number its variable occurrences by positive integersfrom 1, number-
ing the right-hand side of an application before the left-hand side, andthe bound term of
a let-binding before the body of the binding. Then to a variable numberedi we give the
weightfi, f1 = 1fn = nXi=0 2i! � fn�1 ; n > 1
Then since every term has a decreasing weighting, finiteness follows from the two key
properties above.

Extension follows from strong normalisation. Uniqueness ofneed00-normal forms is
implied by confluence ofneed00. Since we already have strong normalisation it suffices
to show weak confluence, which requires only a simple if tedious analysis ofthe relative
positions of redexes.

Pairing certain paths with numeric indices in markings raises a technical issue which
is trivial in the calculi without bindings but which requires mentionhere. In (say) marked
call-by-name reduction, markingsF are simply sets of paths; given matched terms(M;F1)
and(M;F2) we clearly have a correspondence between the marking ofM with all redexes
in eitherF1 or F2 and(M;F1 [F2). In �0need this correspondence is no longer trivial,
since the set-theoretic union of two markings does not necessarily correspond to any termM 0.
Example 4
Let M � let x0 = (let x1 =M1 in let x2 =M2 in N) in L ;
with F1 � f(�; 1)g andF2 � f(�; 2)g. Then there exists termsM 01;M 002 such that for each

13

i we haveM 0i � (M;Fi), but there is noM 00 such thatM 00 � (M;F1 [F2). Specifically,
we haveM 01 � (M;F1) � A1 let x0 = (let x1 =M1 in let x2 =M2 inN) in LM 02 � (M;F2) � A2 let x0 = (let x1 =M1 in let x2 =M2 inN) in L
but since we allow each redex to take no more than one mark (indexed or otherwise), we
can form no term(M;F1 [F2).
Rather than simple set union[, we instead use a modified relationd. We defined to select
only the largest integer to form a pair with each different path that set-theoretic union[
would associate with more than one integer. For theF1;F2 of the above example, we
would haveF1 dF2 � f(�; 2)g. Formally, we have

Definition 4
LetF1;F2 mark redexes inM . Then the setF1 d F2 is defined as:F1 d F2 = f : 2 F1 [F2g [f(;maxfi : (; i) 2 F1 [F2g) : (; n) 2 F1 [F2g
wheremax selects the largest of a finite set of natural numbers.

This relation allows us to prove the following lemma:

Lemma 5
Let F0;F1 mark redexes inM . Then there exists someG such that for any reduction
sequence�i which is a complete development of(M;Fi), �i is also a partial development
of (M;G).
Proof
ThisG is justF0 d F1. 3.2 Conuence
With the results on developments, confluence follows rather easily. Confluence of the(I; V; C;A) subset follows immediately from Theorem 3 and Lemma 5.

Lemma 6
Reduction of�need terms by(I; V; C;A) steps is confluent: ifM ����!need!M1 andM����!need!M2,
then there exists someN such thatM1 ����!need! N andM2 ����!need! N ,MM0 M19N��	need	 @@RneedR

. . . .RneedR	need	 :
We use diagrams like the one above to illustrate asserted conditions.Reduction relations
which are assumed for the result are drawn in solid lines, while reduction relations pre-
dicted by the result are dotted. On occasion we will also use dashed lines tohighlight
correspondences by relations other than reduction.

14

Proof

The result follows as in Barendregt’s reference (1981, Chapter 11). Note that where in
Barendregt’s system the union of markings is trivial, here we must rely on Lemma 5 to
justify the existence byd of a sensible combination of two markings of the same term. The
heart of the proof is the following argument: Given two reduction sequences�0 : (M;F0) ���!cpl M0 and�1 : (M;F1) ���!cpl M1 ;
we have by Lemma 5 someG such that�0 : (M;G) ���!dev! (M0;G0) and�1 : (M;G) ���!dev! (M1;G1) :
Moreover by Theorem 3 the completions of both�0 and�1 end in the same term: that is,
we have someN such that for bothi(Mi;Gi) ���!cpl N :
Since a single reduction step is trivially a complete development, it is a valid inductive
conclusion that given(L0;F) ���!cpl L1 andL0 !! L2 we have someL3 with L1 !! L3
andL2 !! L3; a second induction with this result gives confluence.

Reduction by(I; V; C;A) steps and reduction by(G) steps commute in a specific useful
way:

Lemma 7

LetM ��������!(I;V;C;A) M1 andM ���!(G) M2. Then there exists someN such thatM1 ���!(G)! N
and eitherM2 � N orM2 ��������!(I;V;C;A) N .

Proof

By structural induction onM , and an easy examination of the relative positions of the
redexes.

The above two lemmas are sufficient to imply confluence for�need.

Theorem 8

Reduction in�need is confluent: MM 0 M 009N��	need	 @@RneedR
.RneedR	need	

Proof

Follows from Lemmas 6 and 7 (Barendregt, 1981, Lemma 3.3.5–7).

15

Additional Syntactic Domains

Answers A;Ai ::= �x:M j let x =M in A
Evaluation Contexts E;Ei ::= [] j E M j let x =M in Ej let x = E0 in E1[x]

Standard Reduction Rules(Is) (�x:M) N 7! let x = N in M(Vs) let x = �y:M in E[x] 7! let x = �y:M in E[�y:M](Cs) (let x = L in A) N 7! let x = L in A N(As) let y = (let x = L in A) in E[y] 7! let x = L in let y = A in E[y]
Fig. 8. Standard call-by-need reduction.3.3 Standard evaluation

The confluence result shows that different orders of reduction cannot yielddifferent normal
forms. It might nonetheless be the case that some reduction sequences terminate with a
normal form while others do not terminate at all. However, the notionof reduction can be
restricted to a standard sequence that always reaches an answer if one equal to the starting
term exists.

Figure 8 details our notion of standard reduction. To state the standard reduction prop-
erty, we first make precise the kind of observations that can be made aboutneed programs.
Following the spirit of Abramsky’s work (1990), we define an observation to be a reduction
sequence that ends in a function term. Inneed it makes sense to allow a function term to
be wrapped inlet-bindings, since we can remove bindings from positions interfering with
a subsequent application of that function to an argument by rule(C). Hence, an answerA
is either an abstraction or a let-binding whose body is an answer.

Standard reduction is a restriction of ordinary reduction in that each redexmust occupy
the hole of an evaluation context. The first two productions for evaluation contexts in Fig-
ure 8 are just as for the call-by-name calculus. The third production states that evaluation
is possible in the body of alet. The final production highlights the call-by-need aspect of
the strategy. It says that a definition should be evaluated if the definednode is demanded
(i.e., it appears in evaluation position itself). The second evaluation context in this form is
the key; evaluation contexts reveal demand for one branch of this term bythe other.

The restriction to evaluation contexts for redex selection does not by itself make call-by-
need reduction deterministic. For instance,let x = V0 in let y = V1 in x y
has bothlet’s in evaluation position, and hence would admit either the substitution of V0
for x or the substitution ofV1 for y. For the former contraction we haveE0[�0] !0 [�00]
whereE0 � [] and�0 is the entire term; for the latter we have evaluation context(let x =V0 in []) and contractum(let y = V1 in x y). We arrive at a deterministic standard reduction
by specialising reduction rules to those shown in the second half of Figure 8. Note the
use of evaluation contexts within these rules: evaluation contexts describe demand within
redexes as well as within the contexts surrounding them.

Definition 9 (Call-by-need evaluation)

16

Let 7! be the smallest relation that contains(Is; Vs; Cs; As) and that is closed under the
implicationM 7! N) E[M] 7! E[N]. As usual we write7!! for the reflexive,
transitive closure of7!, and refer to reduction by specific rules by writing the name of the
rule below the arrow.

Theorem 10

The relation7! is a standard reduction relation for�need: for all termsM and answersA,
the following three conditions hold.� (Uniqueness) Exactly one of the following is true:

1. M is an answer.
2. We have some evaluation contextE andx 2 fv(M) such thatM � E[x].
3. We have some evaluation contextE and top-level standard redex� such thatM � E[�].� (Soundness) IfM 7!! A thenM !! A.� (Completeness) IfM !! A then there exists some answerA0 such thatM 7!! A0.

Proof

Uniqueness of evaluation contexts follows by an easy structural induction onM . Sound-
ness is trivial, as all7! steps are also! steps. For completeness the technique is as
in Barendregt’s result for call-by-name (1981,x11.4). We define aninternal redex to be
any(I; V; C;A) step which is not standard, and refer to such a contraction with�!i . Since
we do not mark(G) steps, we treat them separately. Each of the following properties can
be shown by a tedious but conceptually simple case analysis:� If M �!i A thenM is also an answer.� If � : M ! N0 andM ��! N1, both by internal steps, then every redex in=� is

also internal.� If M ��! N is internal andN 7! N0, thenM has a standard redex.� If � :M ! N0 is internal andM 7 ��! N1, then=� contains a single element which
is also the standard redex ofN0.

From these properties and Lemma 5, we can use the finiteness of developments result in
Theorem 3 to deduce that arbitrary(I; V; C;A) sequences can be reordered as standard
steps followed by internal steps,� If M ��������!(I;V;C;A)! N , then there exists someM0 such thatM 7!!M0 �!i! N .

In fact the use of Theorem 3 here and in the above steps is essential; it would be very dif-
ficult to make these arguments directly, without using developments. Moreover, a separate
analysis shows that the following statement holds as well:� If M ���!(G) N 7!! A, then there exists some answerA0 such thatM 7!! A0.

It is clear that(G) steps preserve answers, and so completeness follows by induction on
the internal steps leading to the standard sequence which terminates in an answer.

17

4 Call-by-need and call-by-name

The call-by-need calculus is confluent and has a standard reduction order, and soit is, at
the least, a workable calculus by itself. Still we have yet to explore the relationship be-
tween�need and�name. The conversion theories=need and=name are clearly different —
otherwise there would be little point in studying call-by-need systems! In this section we
will demonstrate the exact difference between these calling conventions. Webegin in Sec-
tion 4.1 with the mapt which maps call-by-need terms to call-by-name terms by simply
substituting all let-bound terms for the bound variables. We uset to give a rigorous com-
parison of their reduction relations in Section 4.2; in Section 4.3 we show the coincidence
of the observational equivalence relations over the common term language.4.1 Relating the terms
The following map formalises the intuitive relationship between call-by-name and call-by-
need terms.

Definition 11 (Let contraction mapt)
We define the mapt from (marked) call-by-need terms to (marked) call-by-name terms as
follows: xt � x(�x:M)t � �x:Mt(M N)t � Mt Nt(let x =M inN)t � Nt[x :=Mt](I(�x:M) N)t � �(�x:Mt) Nt :
For terms decorated with other redex markers, we simply drop the marker andtranslate
according to the above rules.

Example 5
Let M0 � (�x:x) (�y:let z0 = (let z1 = N1 inN2) in N3)! let x = (�y:let z0 = (let z1 = N1 inN2) in N3) in x �M1! �y:let z0 = (let z1 = N1 inN2) in N3 �M2 :
Then Mt0 � (�x:x) (�y:Nt3 [z0 := (Nt2 [z1 := Nt1])])Mt1 � Mt2 � �y:Nt3 [z0 := (Nt2 [z1 := Nt1])] :
Lemma 12
LetM;N 2 need, where

1. (M [x := N])t �Mt[x := Nt].
2. If M (V;C;A;G)= N thenMt � Nt.
3. M is an answer if and only ifMt � �x:N .

18

Proof
All three clauses are straightforward: The first clause follows by a straightforward induc-
tion on the structure ofM ; the second, by inspection of the individual rules, and structural
induction to find the redex contracted inM ; and the third by the obvious structural induc-
tion.

Note that we write, for example,F as a shorthand forf0 : 0 2 Fg. We now extend
the mapt to paths with respect to the term which the path indexes.

Definition 13 (t-images of markings with respect to terms)
Let F index (I)-redexes inM 2 need, where(M;F)t � (Mt;G) for some setG
marking (�)-redexes. Then we define thet-image ofF with respect toM to beG, in
symbolsFt[M] � G. We will write thet-image of a single path to mean simply thet-

image of the singleton set containing just that path,i.e., t[M] � fgt[M].
Example 6
TakingM0 as in Example 5, we havef�gt[M0] � f�gf@2�1gt[M0] � fg
TakingN � let x = ((�y:y) (�z:z)) in ((x N1) (x N2)), we havef`1gt[N] = f@1@1;@2@1g :
The following lemma explicitly justifies what might otherwise appearto be an abuse of the
notation. Sincet-images of(V;C;A;G)-equal terms are identical, we can associate thet-image of a path from either term with thet-image of either term to produce the same
valid member ofname0.
Lemma 14
Let M (V;C;A;G)= N , letF index(I)-redexes inN and letG = Ft[N]. Then(Mt;G) is a

marked call-by-name term, and(Mt;G) � (Nt;G)
Proof
Trivial, since by Lemma 12.(2) we haveMt � Nt.4.2 Relating reduction
In this section we study the relationship betweenNEED reduction andNAME reduction.
We will begin with some basic results about the operator, includingthe soundness oft for
mapping multi-stepNEED reduction sequences to multi-stepNAME reduction sequences.
By soundness we mean just thatt preserves reduction sequences: ifM ����!need! N , thenMt ����!name! Nt as well.

Completeness is more tricky for two reasons: first, reduction inNEED may “overshoot”
reduction inNAME. For example, we can consider the termM � (�x:f x x) (I I) ;

19

L Ltlet x = I I in f x x f (I I) (I I)(�x:f x x) (let y = I in y) (�x:f x x) Ilet x = (let y = I in y) in f x x f I I
Table 1.Possible(I) stepsM ���!(I)! L fromM � (�x:f x x) (I I).

whereI � �x:x. In NAME we have (�x:f x x) (I I)! f (I I) (I I)! f I (I I)� N :
But for all L whereM ����!need! L, we do not necessarily haveLt � N ; the strongest

statement we can make about theseL;M;N is that we will haveLt name= N . Table 1 shows
the possible results of(I) stepsM ���!(I)! L; we do not consider(V;C;A;G) contraction

since (as we show below) they preservet-images. This difficulty is easily overcome: we
simple relax the statement of the completeness result to allow such overshooting; such
behaviour is exactly what one would expect from introducing shared subexpressions into a
compatibly-closed reduction relation.

The second complication arises in finding redexes in aNEED termM which correspond
to each redex in thet-image of aM : in some cases, there may be no corresponding redex
in the original term. For example, in the termM � let x = I in x y, there is no readily
markable redex corresponding to the one contracted inMt � I y ����!name y. The only
redex inM is a(V) redex, which again does not vary thet image. Moreover, other sorts
of redex inNEED terms can interfere similarly. Our solution to this problem is to normalise
terms with respect to the(V;C;A;G) rules: then we can always associate redexes in at-image with a redex — obviously a(I) redex — in the original term. After establishing
these preliminary results, the completeness result follows naturally.

Outline of the results.The behaviour ofneed reduction sequences undert is straightfor-
ward, and leads easily to the soundness result in Lemma 16. For completenessit is easier to
work in need terms which have no(V;C;A;G) redexes. We first establish that all terms
do indeed have unique(V;C;A;G)-normal forms, and give a grammar corresponding to
these forms. We link reduction ofneed terms in general to(V;C;A;G)-normalisation
by Corollary 22, and link reduction of(V;C;A;G)-normalneed terms to(�)-reduction
of name terms through Corollary 26. These results lead to the completeness argument,
which we give as Lemma 27. The soundness and completeness properties are summarised
as Proposition 28. We then extend the equivalence results to convergence (Corollary 30)
and observational equivalence (Theorem 32).

Technically, the soundness and completeness results rely in an essential way onthe no-
tion of developments. What we actually show for soundness is that let contraction preserves

20

complete developments: if� is a complete development of a markedNEED term (M;F)
ending inN , then the completeNAME development of thet image of(M;F) is Nt. For
completeness we show that a completeNAME development� corresponds to a complete
NEED development whoset-image is again a completeNAME development� ; � will be a
partial development of the redexes marked at the beginning of� .

For soundness we need two lemmas. Lemma 12.2 tells us that(V;C;A;G) steps pre-
servet-images; the following result treats(I) steps.

Lemma 15
LetM ���!(I) N be aneed step. Then(M; fg)t ���!cpl Nt.

Proof
By structural induction onM . All of the cases are immediate from the induction hypothesis
except whenM � (let x =M0 inM1). Then we have two cases, depending on the location
of the redex.

1. � `1�. ThenM0 ��! N0, N � (let x = N0 inM1) andNt �Mt1 [x := Nt0]. By
the induction hypothesis we have(M0; f�g)t ���!cpl Nt0 ;
or in other words (M0; f�g)t �����!name00! Nt0 2 name :
Since marked call-by-name reduction is substitutive, we have� such that� : (M; fg)t �Mt1 [x := (M0; f�g)t] �����!name00!Mt1 [x := Nt0] � N ;
and sinceMt1 ; Nt0 2 name and unmarked, so isN , and� is in fact a complete
development.

2. � `2�. ThenM1 ��! N1, N � let x = M0 in N1 andNt � Nt1 [x := Mt0]. The
result is largely as in the previous subcase. By the induction hypothesis we have(M1; f�g)t ���!cpl Nt1 ;
or in other words (M1; f�g)t �����!name00! Nt1 2 name :
Again by substitutivity of marked call-by-name reduction, we have� such that� : (M; fg)t �Mt1 [x := (M0; f�g)t] �����!name00 Nt1 [x :=Mt0] � N ;
and once again sinceMt0 ; Nt1 2 name and unmarked, so isN , and we have that�
is a complete development.

Corollary 16 (Soundness oft for reduction)
LetM;N 2 need with M ����!need! N . ThenMt ����!name! Nt.

Proof

21

Syntactic Domains

Applicable Terms �H ::= �V j �H �M
Values �V ::= �x: �M j x
Terms �L; �M; �N ::= �V j let x = �H �M in �M j �H �Mwhere in a term(let x = �H �M0 in �M1), x 2 fv(�M1)

Fig. 9.(V;C;A;G)-normalNEED terms.

By induction on the length of the reduction sequence, with Lemma 12.(2)for (V;C;A;G)
steps and Lemma 15 for(I) steps.

For completeness we will use the subset ofNEED terms shown in Figure 9. In fact
we will show in the next lemma that this subset identifies theNEED terms which are in(V;C;A;G)-normal form. We let�L; �M; �N range over these terms.

Lemma 17
Let �M be as described in the figure.

1. �M is aNEED term.
2. Moreover, a termM 2 need is in (V;C;A;G)-normal form if and only if it can be

expressed as some term�M .

Proof
The first clause is trivial. For the second clause, it is clear that every term�M has no(V;C;A;G)-redexes. For the converse, we consider structural induction on(V;C;A;G)-
normal forms, and show that they are indeed equivalent to some term�M . Only applications
and let-bindings are interesting; other term-forms are trivial.

1. LetM �M0 M1 be a(V;C;A;G)-normal form. By the induction hypothesis, eachMi is equivalent to some�Mi. Moreover, forM not to be a(C)-normal form,M0
cannot be a let-binding, only a(V;C;A;G)-normal value or application: in other
words, it must be some�H, and so we haveM � �H �M1.

2. LetM � let x = M0 in M1 be a(V;C;A;G)-normal form. By the induction hy-
pothesis, again eachMi is equivalent to some�Mi, and we clearly havex 2 fv(M1).
ForM not to be a top-level(V;A)-redex, we must have thatM0 is neither a value
nor another let-binding, only a(V;C;A;G)-normal application: in other words, it
must be some(�H �N), and so we haveM � let x = (�H �N) in �M1.

Definition 18 ((V;C;A;G)-normalization relation)
For termsM;N 2 need, we writeM �����������!(V;C;A;G)-nf N if M ���������!(V;C;A;G)! N andN is a(V;C;A;G)-normal form.

The following three technical lemmas follow from the technical issues we detail in the
proof of Theorem 3.

Lemma 19
For allM 2 need there exists a uniqueN such thatM �����������!(V;C;A;G)-nf N .

22

Proof
We modify the argument for the finiteness of call-by-need developments from Theorem 3.
We use the same notion of weighted term and norm as above, but we take a different
definition of decreasing weighting:� All free variablesxi orVxi have decreasing weighting.� An abstraction�x: _M has a decreasing weighting if_M has a decreasing weighting.� An applicationI(_M _N) has decreasing weighting if both_M and _N have decreasing

weighting.� A binding(let x = _M in _N) orAn(let x = _M in _N) has decreasing weighting if:

1. Both _M and _N have decreasing weighting.
2. For allxi orVxi in _M , we havei > k _Nk.

The idea is that we track all let-bindings, but we do not ever create any newones, since
we are not interested in(I) steps. By manual analysis of the various combinations we can
show that(V;C;A;G) reduction — marked or unmarked — of a term with decreasing
weighting both strictly decreases the norm and retains a decreasing weighting. We can
give any term a decreasing weighting with the same algorithm as above, and thus strong
normalisation follows.

Lemma 20
Let � : L0 ���������!(V;C;A;G) L1, (L0;F) ���!cpl M whereF marks(I) steps, and takeN where(L1;F=�) ���!cpl N . ThenM ���������!(V;C;A;G) N .

Proof
For� a (V;C;A) step the result is immediate from Theorem 3. Otherwise for a(G) step
we have the result by induction on the size ofF with a simple comparison of the relative
positions of the redexes at each step.

Lemma 21
Let L �����������!(V;C;A;G)-nf �L, M �����������!(V;C;A;G)-nf �M and letF index (I)-redexes inL such that� : (L;F) ���!cpl M . Then�L ����!need! �M .

Proof

We strengthen the obvious fact that�L need0= �M . We fix � as some(V;C;A;G)-reduction
sequence fromL to �L; then by induction on the length of� , applying Lemma 20 at each
step, we have a common reduct of�L andM , which by Lemma 19 reduces to�M .

The condition guaranteed by the next result is stronger than just confluence for(I) steps:
confluence tells us only that there exists someN such that both�L and �M reduce toN .
This lemma asserts that thisN is in fact equivalent to�M .

Corollary 22
LetL �����������!(V;C;A;G)-nf �L, M �����������!(V;C;A;G)-nf �M andL ����!need M . Then�L ����!need! �M .

Proof
If L ����!need M is a(V;C;A;G)-step, then the result is trivial since we have unique normal
forms: thus�L � �M . Otherwise, the result follows from the above lemma since the single
step can be viewed as the complete development of a single(I)-redex.

23

Lemma 23
Let �M be a(V;C;A;G)-normalneed term where �Mt � N 2 name, and let index a(�)-redex inN . Then there exists some� indexing an(I)-redex in �M such that 2 f�gt[�M].
Proof
By induction on the structure of the term�M . When �M is an application or abstraction the
result follows directly from the induction hypothesis. For�M � let x = �H �M1 in �M2, we
distinguish between two possibilities: whether the marked redex inN originates in �M1 or
in �M2. The distinction is made by the following technical criterion: do there exist0 and1 such that � 01 and �Mt2 j0 � x ? In other words, in indexing�Mt2 by , do we run
into a reference to the let-bound variable somewhere along the indexing path?� Such0; 1 exist.Then the result follows by induction on(�H �M1) and1.� No such0; 1 exist.Then clearly we have some� such that �M2j� is an application�V �N and�t�M2 � . Moreover,�V must be an abstraction and not a variable: if it

were a variable, and forM to have a redex at, then it would be necessary that the
variable be let-bound to an abstraction, which is impossible by(V)-normalisation.
We also have that�V is not a let-binding, since�M is (C)-normal. So� does in fact
mark a redex in�M .

Corollary 24
Let �M be a(V;C;A;G)-normalneed term where �Mt � N 2 name, and letF index(�)-redexes inN . Then there exists someG indexing(I)-redexes in �M such thatF �fGgt[�M].
Proof
This G is just the union of the individual corresponding redexes for everymember ofF
predicted by Lemma 23 above.

The main lemma of this section follows:

Lemma 25
Let �L be a(V;C;A;G)-normalNEED term, and letM;N 2 name where�0 :M ����!name N :�1 :M ����!name! �Lt
Then there exists some(V;C;A;G)-normal NEED term �L0 such that�L ����!need! �L0 andN ����!name! �Lt0 :

M N�Lt �Lt0�L 9�L0- -name6name6.-need -
.
.
.
.
.6name6 :

Proof

24

M N(M;)

�Lt
M0(�Lt; =�1)

(�L; G)t � (�Lt;Gt[�L]) (M0;Gt[�L]=�)
(�L;G) Nt0 � �Lt0

�L N0 �L0

-�0 : -[Given] - -name

6
name
66

�1 :
6

[Given] XXXXXXXXXXXXXXXXXXzcplXXXXXXXXXXXXXXXXXXz[1]
-cpl -� : -[2] 6name66[2]

6�6[3]
��������*need-cpl��������*[4] -(V;A;C;G)-nf

-[4]
-cpl -[5]HHHHHHjdevHHHHHHj[6] �������*cpl�������*[6]

-need --[7]
6name66[7]
t@@ @@ @@ @@ @@ @@ttt

:
Fig. 10. Reasoning for the proof of Lemma 25. The numbers in square brackets refer to the sentence

in the proof where the particular link is established. Except where explicitly indicated, all
(complete) developments areNAME sequences.[1]SinceM ����!name N in a single step,�0 may be viewed as a complete development of

that single redex.[2]Then by Proposition 1, we have someM0 2 name such that� :(�Lt; =�1) ���!cpl M0 andN !!M0. [3]By Lemma 24 we have some markingG of �L such

that =�1 � Gt[�L]. [4]We takeN0 to be the result of the complete development of�L by
the (I)-redexes marked inG, which is also unique (by Theorem 3), and which has some(V;A;C;G)-normal form�L0 (by Lemma 19).[5]Since we can consider only marked(I)
steps, by Lemma 21, we have(�L;G)t ��������!name-cpl �Lt0 as well.[6]Since=�1 � Gt[�L], � is a

partial development of(�L;G)t which can be extended again by finiteness of developments
for call-by-name to a complete development ending in�Lt0 . [7]So since developments can be
projected to sequences in the unmarked calculi, we have that both�L ����!need! N0 ����!need! �L0
andN ����!name! M0 ����!name! �Lt0 . The reasoning is summarised in Figure 10, which refers to
the sentence numbering.

Corollary 26
Let �L be a(V;C;A;G)-normalNEED term, and letM;N 2 name whereM ����!name! �Lt

25

andM ����!name! N . Then there exists some(V;C;A;G)-normal NEED term �L0 such that�L ����!need! �L0 andN ����!name! �Lt0 :

M N�Lt �Lt0�L 9�L0-name -6name6.-need -
.
.
.
.
.6name6 :

Proof
By the obvious induction using Lemma 25 at each step.

Lemma 27 (Completeness oft for reduction with overshooting)
LetM 2 need andN0 2 namewhereMt ����!name! N0. Then there exists someN 2 need
such thatM ����!need! N andN0 ����!name! Nt.

Proof
Follows immediately from Corollary 26 by considering the(V;C;A;G)-normal forms �M
and �N of M andN , respectively, which exist and are unique by Lemma 19; we have�M ����!need! �N by Corollary 22.

We can now prove the main equivalence result between call-by-name and call-by-need
reduction.

Proposition 28 (Equivalence of call-by-name and call-by-need reduction)
The functiont is sound and complete for mappings ofNAME reduction sequences toNEED

reduction sequences, whereNEED sequences are allowed to “overshoot”NAME results:Mt NtM N-need -
.-name - Mt N0 NtM 9N-name -. .-need -

.-name -
Proof
By Lemmas 16 and 27.

The convergencerelations+ are defined in terms of whether the respective reduction
relations lead from a term to a result, but do not consider the particular result.

Definition 29 (Convergence relations)
LetM 2 name andN 2 need.

1. We say thatM converges in the call-by-name calculus, orM +name, exactly when
we have some abstraction�x:M0 such thatM ����!name! �x:M0.

2. We say thatN converges in the call-by-need calculus, orN +need, exactly when we
have some call-by-need answerA such thatM ����!need! A.

Example 7
Let
 � (�x:x x) (�x:x x), I � (�y:y) andK � (�zw:z). ThenK I
 +name, sinceK I
 � (�zw:z) I
7����!name (�w:I)
7����!name I :

26

But adopting the convergence notation for call-by-value, we haveK I
 6+val, sinceK I
 7���!val (�w:I)
7���!val (�w:I)

and so on.

Proposition 28 gives us a straightforward relationship between the two convergence rela-
tions:

Corollary 30 (Convergence in call-by-name and call-by-need)
For allM 2 �need, M +need if and only if Mt +name :
Proof
By Proposition 28 and Lemma 12.(3).4.3 Relating observational equivalences
Observational equivalence is the coarsest equivalence relation over terms that still distin-
guishes between terms with different observational behaviour. Formally:

Definition 31 (Observational equivalence relations)
Two termsM;N of a languageL are observationally equivalentunder a convergence
theory+R, writtenM �=R N , if and only if for allL-contextsC such thatC[M] andC[N]
are closed, C[M] +R if and only if C[N] +R :
Example 8
It is trivially true that all reduction-related terms of the calculi we consider are observa-
tionally equivalent: ifL0 !! L1 andC[L0]!! A0, then clearlyC[L0]!! C[L1], and� By confluence there is someM0 such that� : A0 !!M0 andC[L1]!!M0.� By the first itemised property in the proof of 10 and� , M0 must also be an answer.

soC[L1] + as well.
The converse is simpler; ifL0 !! L1 andC[L1] !! A0, thenC[L0] !! C[L1] !! A0

as well. So for example,K I
 �=name I . TakingC � [] it is clear thatK I
 6�=val I , but
a simple structural induction reveals thatK I
 �=val
.

Corollary 30 implies that�need is a conservative observational extension of�name:
Theorem 32 (Observational equivalences in call-by-name and call-by-need)
The observational equivalence theories of�name and�need coincide on�name. For all
termsM;N 2 �name, M �=name N if and only if M �=need N :
Proof

27

“)”: AssumeM �=name N and letC be a�need-context such thatC[M] andC[N] are
closed. LetC# result fromC by eliminating alllet’s in C using rule(I) repeatedly in
reverse. ThenC[M] +need, C#[M] +need sinceC#[M] need= C[M], C#[M] +name by Corollary 30, since(C#[M])t � C#[M], C#[N] +name sinceM �=name N, C[N] +need by the reverse argument on Corollary 30:
“(”: Symmetrically, withC instead ofC#, and leaving out the first step in the equivalence
chain.

Corollary 33
The rule� is an observational equivalence in�need: For allM;N 2 �need,(�x:M) N �=need [M=x]N :
Proof
Let M;N 2 �need. LetM0; N0 be the corresponding�name-terms that result from elimi-
nating alllet’s in M;N by performing(I) reductions in reverse. Then we have in�need:(�x:M)N = (�x:M0)N0 �= [N0=x]M0 = [N=x]M
where “�=” follows from Theorem 32.

5 Natural semantics

This section presents an operational semantics for call-by-need in the naturalsemantics
style of Plotkin and Kahn, similar to one given by Launchbury (1993).The natural seman-
tics is closely related to the standard reduction order we presented above.

A heapabstracts the state of the store at a point in the computation. It consists of a
sequence of pairs binding variables to terms,x1 7!M1; : : : ; xn 7!Mn:
The order of the sequence of bindings is significant: all free variables ofa term must be
bound to the left of it,i.e. a termMi may contain as free variables onlyx1; � � � ; xi�1..
Furthermore, all variables bound by the heap must be distinct. Thus theheap above is well-
formed if fv(Mi) � fx1; : : : ; xi�1g for eachi in the range1 � i � n, and all thexi are
distinct. Let�;	;� range over heaps. If� is the heapx1 7! M1; : : : ; xn 7! Mn, define
vars(�) = fx1; : : : ; xng:A configuration pairs a heap with a term, where the free variables
of the term are bound by the heap. Thush�iM is well-formed if� is well-formed and
fv(M) � vars(�). The operation of evaluation takes configurations into configurations.
The term of the final configuration is always a value. Thus evaluation judgements take the
form h�iM + h	iV .

The rules defining evaluation are given in Figure 11. There are three rules, for identifiers,
abstractions and applications.

28

Id
h�iM + h	iVh�; x 7!M; �ix + h	; x 7! V; �iV

Abs h�i�x:N + h�i�x:N
App

h�iL + h	i�x:N h	; x0 7!Mi [x0=x]N + h�iV x0 freshh�iL M + h�iV
Fig. 11. Operational semantics of call-by-need lambda calculus.� Abstractions are trivial. As abstractions are already values, the heap is leftunchanged

and the abstraction is returned.� Applications are straightforward. We evaluate the function to yield alambda abstrac-
tion, extend the heap so that the the bound variable of the abstraction is bound to the
argument, and then evaluate the body of the abstraction. In this rule,x0 is a new
name not appearing in	 or N . The renaming guarantees that each identifier in the
heap is unique.� Variables seem more subtle, but the basic idea is straightforward: we find the term
bound to the variable in the heap, evaluate the term, then update the heap to bind the
variable to the resulting value. Some care is required to ensure that the heap remains
well-formed. The original heap is partitioned into�; x 7! M; �. Since the heap is
well-formed, only� is required to evaluateM . Evaluation yields a new heap	 and
valueV . The new heap	 will differ from the old heap� in two ways: bindings may
be updated (by Var) and bindings may be added (by App). The free variables of V
are bound by	, so to ensure the heap stays well-formed, the final heap has the form	; x 7! V; �. Note that this last statement implies that any new bindings added into	 will use fresh variables which are not also used in�.

A semantics oflet terms can be derived from the above rules: the semantics oflet x =M in N is identical to the semantics of(�x:N) M .
As one would expect, evaluation uses only well-formed configurations,and evaluation

only extends the heap.

Lemma 34
Given an evaluation tree with rooth�iM + h	iV , if h�iM is well-formed then every
configuration in the tree is well-formed, and furthermore vars(�) � vars().

Thanks to the care taken to preserve the ordering of heaps, it is possibleto draw a
close correspondence between evaluation and standard reductions. If� is the heapx1 7!M1; : : : ; xn 7!Mn, write let � in N for the termlet x1 =M1 in � � � let xn =Mn in N:
Every answerA can be writtenlet 	 in V for some heap	 and valueV . Then a simple
induction on+-derivations yields the following result.

Proposition 35
For all heaps�, 	, termsM and valuesV ,h�iM + h	iV if and only if let � in M 7����!need! let 	 in V :

29

Syntactic Domains

Variables x; y; z
Values V;W ::= x j �x:M
Terms L;M;N ::= V j M N
Answers A;Ai ::= �x:M j (�x:A)M
Evaluation Contexts E;Ei ::= [] j E M j (�x:E)Mj (�x:E0[x]) E1

General Reduction Rules(V `) (�x:C[x]) V ! (�x:C[V]) V(C`) (�x:L)MN ! (�x:LN)M(A`) (�x:L)((�y:M)N) ! (�y:(�x:L)M)N(G`) (�x:M) N ! M if x 62 fv(M)
Standard Reduction Rules(Vs̀) (�x:E[x]) (�y:M) 7! (�x:E[(�y:M)]) (�y:M)(Cs̀) (�x:A)MN 7! (�x:AN)M(As̀) (�x:E[x])((�y:A)N) 7! (�y:(�x:E[x])A)N

Fig. 12. The let-less call-by-need calculus.

The semantics given here is similar to that presented by Launchbury (1993). An advan-
tage of our semantics over Launchbury’s is that the form of terms is standard, and care is
taken to preserve ordering in the heap. Launchbury uses a non-standard syntax, in order
to achieve a closer correspondence between terms and evaluations: in an application the
argument to a term must be a variable, and all bound variables must be uniquely named.
Here, general application is supported directly and all renaming occurs as part ofthe ap-
plication rule. It is interesting to note that Launchbury presents an alternative formulation
quite similar to ours, buried in one of his proofs.

An advantage of Launchbury’s semantics over ours is that his copes more neatly with
recursion, by the use of multiple, recursivelet bindings. An extension of our semantics
to include recursion (Ariola and Felleisen, 1994, for example) would lose the ordering
property of the heap, and hence lose the close connection to standard reductions (Mossin
et al., 1995). We discuss other extensions for recursion below.

6 Call-by-need without bindings

In the call-by-name calculus, we have related(let x = M in N) to ((�x:N) M) by an
explicit reduction rule: but arelet-bindings really essential? It turns out that they are not;
we can take the conversion to be a syntactic identity, and thus expel the bindings from
call-by-need. We call the resulting calculus�ǹeed (reading thè as “let-less”). Its notions
of general and standard reduction are shown in Figure 12. We define convergence+need`
and observational equivalence�=need` in the new system as usual.

While �ǹeed is perhaps somewhat less intuitive than�need, its simpler syntax makes
some of the basic (syntactic) results easier to derive. It also allows bettercomparison with
the call-by-name calculus, since no additional syntactic constructs are introduced.

Clearly,�need and�ǹeed are closely related. More precisely, the following theorem states

30

that reduction in�need can be simulated in�ǹeed, and that the converse is also true, pro-
vided we identify terms that are equal up to(I) introduction.

Proposition 36
For allM0 2 �ǹeed, M1 2 �need,M0M1 N1

N0-need` -?(I)??(I)?.-need - M0M1 N1
N0.-need` -?(I)??(I)?-need - :

Proposition 36 can be used to derive the essential syntactic properties of�ǹeed from those
of �need:

Theorem 37
Reduction in�ǹeed is Church Rosser.

Theorem 38
The relation7�����!need` is a standard reduction relation for�ǹeed. For all termsM and answersA 2 �ǹeed,� Soundness. If M 7!! A thenM !! A.� Completeness. If M !! A then there exists some answerA0 2 �ǹeed such thatM 7!! A0.

The let-less calculus�ǹeed has close relations to both the call-by-value calculus�val and
the call-by-name calculus�name. Its notion of equality=�ǹeed — i.e. the least equivalence
relation generated by the reduction rules — fits between those of the other two calculi,
making�ǹeed an extension of�val and�name an extension of�ǹeed.

Theorem 39 =�val � =�ǹeed � =�name :
Proof
Rule�V can be expressed by a series of(I; V;G) steps, as shown in Example 9, so we have=�val � =�ǹeed . To show that the inclusion is proper, we take
 to be the usual divergent
expression
 � (�x:x x) (�x:x x) ;
and have (�x:x) ((�y:y)
) = (�y:(�x:x) y)

by the(A`) rule; this equality does not hold in call-by-value, so=�val � =�ǹeed .

For the second inclusion, we can see that each�ǹeed reduction rule is an equality in�.
For instance, in the case of(V `) we have:(�x:C[x]) V =� [V=x](C[x]) � [V=x](C[V]) =� (�x:C[V]) V :

31

The other rules have equally simple translations; the left- and right-hand sides of the ax-
ioms always have a common(�)-reduct which can be constructed by contracting the appli-
cations mentioned in the rules, and identifying the two sides based on the (non-)occurrence
of substituted variables in certain subexpressions. Thus we have=�ǹeed � =�name . For the
proper inclusion, we have the following instance of� which is not an equality in�ǹeed:(�x:x)
 =
 ;
and so=�ǹeed � =�name .
As in the calculus with bindings, one can show that the observational equivalence theo-
ries of�ǹeed and�name are identical; the proof is by a simple application of Theorem 32
together with Proposition 36. The observational equivalence theories ofboth�ǹeed and�name are incompatible with the theory for�val.
Theorem 40
For all termsM;N 2 �, M �=name N () M �=need` N :
Theorem 39 implies that any model of the call-by-name calculus is also a modelof �ǹeed,
since it validates all equalities in�ǹeed. Theorem 40 implies that any adequate (respec-
tively fully-abstract) model of�name is also adequate (fully-abstract) for�ǹeed, since the
observational equivalence theories of both calculi are the same. For instance, Abramsky
and Ong’s adequate model of the lazy lambda calculus (Abramsky, 1990) is also adequate
for �ǹeed.

7 Extensions

The formulation of call-by-need we have reviewed is rather basic, and lacksa number
of common syntactic conveniences, which we consider now. In Section 7.1 we consider
the algebraic data types which are central to elegance of real functional programs. Sec-
tion 7.2 discusses how we can include constants and primitive functions to the calculus.
One also often considers recursive let-bindings; we do not consider recursion is detail
here, but sketch a number of others’ approaches in the conclusion.7.1 Constructors and selectors
Functional programs rely in an essential way on distinguishable tagged packages of infor-
mations. The ubiquitous list is one such datatype with two such constructors,Cons and
Nil. The former tag accompanies two items, the head and tail of the list; the latter tag is
unaccompanied.

Of course, these additions can be simulated in the base language via Churchencodings,
but a more high-level treatment is often desirable for reasons of both clarity and efficiency.
The syntax and semantics of the extension are shown in Figure 13; we write ~S to abbreviate
many occurrences ofS, andlet ~x = ~M in N as an abbreviation forlet x1 =M1 in � � � let xai =Mai inN :

32

Syntactic Domains

Terms L;M;N ::= � � � j caseM in h ~S ij Ki M1 ::: M(ai) (ai � 0)
Clauses S ::= Ki ~xai1 :M
Answers A ::= � � � j Ki M1 ::: M(ai) (ai � 0)
Evaluation contexts E ::= � � � j case E in h ~S i

Additional Reduction Rules(IK) case Ki ~M in h � � � ; Ki ~x:N; � � � i ! let ~x = ~M inN(V K) let x = Ki ~M inN ! let ~y = ~M inN [x := Ki~y](AK) case (let x =M inN) in h ~S i ! let x =M in case N in h ~S i
Additional Evaluation Rules(IKs) caseKi ~M in h � � � ; Ki ~x:N; � � � i 7! let ~x = ~M inN(V Ks) let x = Ki ~M in E[x] 7! let ~y = ~M in (E[x])[x := Ki~y](AKs) case (let x =M inA) in h ~S i 7! let x =M in case A in h ~S i

Fig. 13. Data constructors and selectors.

In a tagged expression, a tagKi expectsai component items. We distinguish between
different tags and access their components via acase expression. A clauseS of a case
expression has the form Ki x1 � � � xai : Mi :
A case expression then consists of one subexpression to be considered,plus a series of
clauses of distinct constructors:case M in h S1; S2; : : : ; Sn i :
Reduction of the case statement involves matching the constructor of the subtermM . Since
we do not want to force the constructor subterms to be evaluated until they are individually
demanded, we create new bindings to the pattern variables in the(IK) rule:case (KiM1 � � � Mai) in h � � � ; Ki x1 � � � xai :N; � � � i! let x1 =M1 in � � � let xai =Mai in N :
The (V K) rule facilitates let-bound constructor expressions, again creating bindings for
the subexpressions rather than duplicating them in the substitution. The separate rules(V)
for freely copyable values (abstractions and variables) and(V K) for constructor terms is
awkward, but avoids the need for separate tags which indicate whether the subexpressions
are copyable. One might further refine this scheme by includingKi ~V as a value, and
restricting(V K) to the case where at least one of the subexpressions is not a value. Finally
we also have a new structural rule(AK), which allows us to rearrange a let-binding in the
term under examination.

Most other formalisations of call-by-need, including the representation of terms for the
STG machine (Peyton Jones, 1992), Launchbury’s natural semantics (Launchbury, 1993),
and our earlier work on the subject with Ariola and Felleisen (1995), restrict constructor
subcomponents to either variables or values, and copy the subcomponents inthe rule anal-
ogous to(V K). In our (evaluation) rules, thecase expression is both an evaluator of its

33

Syntactic Domains

Constants and functions c; p
Values V;W ::= �x:M j c
Evaluation contexts E ::= � � � j p E

Additional Reduction Rules(�) p c ! �(p; c) �(p; c) defined

Additional Evaluation Rules(Gs) let x =M in c 7! c(�s) p c 7! �(p; c) �(p; c) defined

Fig. 14. Constants and primitive functions.

subterm and a memory allocator for the new let-bound terms. Since the STG machine is
intended to directly reflect low-level details of an actual compilation, a moreorthogonal
design is appropriate. In the STG machine thecase expression is essentially just a subrou-
tine call to evaluate the subterm, and only case expressions correspond to such subroutine
calls. Likewise, STG let-bindings suggest only memory allocation on the heap, and no
other construct allocates heap space. Thus it is desirable in the STG machine torestrict
the subcomponents to variables, and assume the presence of some preprocessor which
repeatedly lifts out non-variable subcomponents via let-bound variables. The other two ap-
proaches follow this implementation philosophy, but for a general calculus the restriction
is rather artificial. 7.2 Constants and primitive functions
A further aspect of real functional programming languages is the inclusionof constants and
primitive function in the language. Like constructors and selectors, constants and prim-
itive functions may simply be Church-encoded, but again at the cost of readability and
a distortion of the actual effort required in program reduction as comparedto the actual
implementation.

Figure 14 describes the extension of the call-by-need calculus for constants. Following
Plotkin, we add a set of unique names to the set of values, and assume the existence of
some (probably partial) function� from pairs of these names to names. We letc; p range
over these constants, generally usingp to refer to constants used as functions. We letA
range as usual over abstractions possibly under bindings, although the result below deals
with observation of constants rather than these “answer” closures. Thus as discussed in
Section 8, garbage collection becomes essential in evaluation to constants. The following
result relates reduction to basic elements in call-by-need and in call-by-name. The result is
an easy extension of Proposition 28, and relies on(G) to discard unneeded bindings from
around the primitive in the call-by-need sequence.

Corollary 41
For all termsM 2 � with primitives and constantsc,M ����!need! c () M ����!name! c :

34

8 Concluding remarks

We conclude with a discussion of our call-by-need calculus in relation to anumber of other
systems and notion of reduction.

On other formulations of call-by-need.Josephs (1989) gives a continuation- and store-
based denotational semantics of lazy evaluation. Purushothaman and Seaman (1992) give
a structured operational semantics of call-by-name PCF with explicit environments that
is then shown to be equivalent to a standard denotational semantics for PCF.Launch-
bury (1993) presents a system with a simpler operational semantics and gives in addition
rules for recursive let-bindings that capture call-by-need sharing behaviour. The key point
about all this work is that while it does provide an operational model ofcall-by-need, it
does not provide anything like a calculus or a reduction system for equational reasoning.

In work done independently of ours, Ariola and Felleisen proposed a similar calcu-
lus (1994). We have taken the position that call-by-need, in a general sense, should unite
the observational behaviour of call-by-name with the restrictions oncopying of call-by-
value. Thus since none of the(V;C;A;G) rules copy top-level non-values, and since (as
we see in the next section) they do preserve call-by-name observations,it is appropriate
to adopt the rules without restriction. Ariola and Felleisen take a narrower view of what
one should permit within a reduction relation, and interpret the “need” in call-by-need lit-
erally. Their system can be characterised as the relation(Is; Vs; Cs; As) compatibly closed
under all contexts. In other words, the restriction to subexpressions which we impose only
in standard reduction rules, they impose universally. Their calculus captures only “the in-
tentional aspects of modern call-by-need evaluators,” which we find appropriate for the
standard reduction relation but too restrictive for the general calculus. Their system proves
fewer program transformations as equalities, requiring instead the more difficult notion of
observational equivalence. It is interesting to note that Ariola and Felleisen’s summary of
Plotkin’s criteria for the development of calculi to capture language properties (1975) does
note that “the equations of [a] calculus should identify terms that are ‘observationally in-
distinguishable’ from each other;” as such we feel that our system more closely adheres to
Plotkin’s program. However it should be noted that without their restrictions, confluence
may be lost when extending the system for mutually recursive bindings, which we address
as a separate point below; this point is certainly one advantage of their formulation. Ariola
and Felleisen’s restriction to the bodies of the general rules does streamline the transition
from general to standard reduction, since one needs only to consider an alternate notion
of compatible closure, under evaluation rather than arbitrary contexts. Our system differs
further from Ariola and Felleisen’s in our inclusion of a rule for garbage collection, which
we also discuss separately below.

Ariola and Felleisen also raise the somewhat more practical possibilitythat their system
admits easier proofs of the various syntactic properties. Strictly speaking this claim is not
invalid; their restriction of the general reduction rules allows resultson certain classes of
term rewriting systems to be applied directly, making confluence immediate. While our
results on developments are somewhat less immediate, once proven the samemain syn-
tactic results are in fact straightforward; the same results on developments were also quite
useful in the proofs about the observational equivalence theories, whereaswith Ariola and

35

Felleisen’s weaker notion of marked redexes an additional layer of diagrammingnotation
is necessary. Although we do believe that the technical results we present allow a more sys-
tematic technical exposition, this issue is separate from the questionof which formulation
of the general reduction rules is more appropriate.

On call-by-need and explicit substitutions.At first glance the call-by-need system seems
to be little aside from yet one more formulation of explicit substitutions (Abadiet al., 1990,
for example). However, the assumptions made by explicit substitution schemes regarding
what the “expensive” operation is in reduction are different. Explicit substitution schemes
track substitutions through a term, but do not place any restrictionson the duplication
of substitutions. As suggested by their name, the explicit steps of pushing a substitution
through the structure of a term, plus accounting for the interaction of unpropagated substi-
tutions with other structures, is the difference with an implicit formulation. In our call-by-
need scheme, we have no interest in how substitutions move through the term, but rather
under what circumstances substitutions — implicit or explicit — may be created in a term.
A clear advantage of call-by-need over explicit substitutions is simplicity; explicit substi-
tution schemes have considerably more rules, and correspondingly one has more difficulty
in establishing its syntactic properties.

Benaisaissa, Lescanne and Rose (1996) have presented a hybrid system whichincor-
porates sharing, explicit substitutions and explicit address references, and which is quite
useful for expressing space complexity. Their system is quite general,and can simulate
ours, as well as a number of other interesting systems, as a subset of its rules, but as a
result is a rather large, complex system. The particular calculus which theypresent allows
weak reduction only, but is easily generalised to allow reduction in any context (Rose,
private communication).

On call-by-need, full laziness and optimal reduction.Although we allow only values to
replace a variable in a substitution, it is not true that only values areever copied. In the
contraction M � let x = (�y:M0 y y) in C[x]! let x = (�y:M0 y y) in C[�y:M0 y y] ;
the subexpression(M0 y y) is obviously not a value, but is nonetheless copied. A num-
ber of issues apply to this situation, but the motivation behind ourformulation is the be-
haviour of graph reduction implementations of lazy functional languages in the style of
the G-machine and its descendants. In these designs, lambda abstractions correspond to
subroutines in the machine code,i.e. simple addresses which may be copied freely. The(V) rule is faithful to this design principle: we replace a reference tox with a reference to
code which will seek an argumenty and then construct the graph ofM0 y y.

We have explicitly declined certain opportunities for greater sharing. In the above ex-
ample, ify does not occur inM0 then a more space-efficient representation ofM could be
written as N � let f =M0 in let x = (�y:f y y) in C[x] :
Rather than reducingM toN at runtime, we view the conversion ofM toN as appropriate

36

to a transformation carried outbeforeprogram execution. In particular, the full laziness
transformation enables sharing of such subterms (Wadsworth, 1971; Hughes, 1983).

Even after a full laziness pass, we would still copy the non-value(f y y):let f =M0 in let x = (�y:f y y) in C[x]! let f =M0 in let x = (�y:f y y) in C[�y:f y y] :
Such expressions are indeed copied in lazy functional graph reduction implementations,
and we do not view this effect as a shortcoming. Sharing of subterms across different
instantiations of bound variables is addressed byoptimalreduction strategies (Lévy, 1980;
Lamping, 1990; Field, 1990; Abadiet al., 1990; Maranget, 1991). Although the additional
sharing of those calculi does allow the fewest possible reduction steps, it is not clear how
useful optimal reduction is for compilation to efficient low-level code.

Yoshida (1993) presents a weak lambda calculus with explicit environments similar to
let constructs, and gives an optimal reduction strategy. Her calculus subsumesseveral of
our reduction rules as structural equivalences. However, due to a differentnotion of ob-
servation, reduction in this calculus is not equivalent to reduction to weakhead-normal
form.

On call-by-need and generalisations of classical�-reduction. Much work exists in dis-
covering future redexes which are simply blocked by another contraction which has not
yet occurred. For example, in the term(�x:�y:L) M N
it is clear that the occurrences ofy in L will be replaced byN , but that substitution will
not be possible until we have first replacedx with M . Nederpelt proposed a notion of gen-
eralised� reduction,! which allows this contraction to occur at once (Nederpelt, 1973):(�x1:�x2:L)M1 M2 ,! (�x1:L[x2 :=M2]) M1(�x1:�x2:�x3:L)M1 M2 M3 ,! (�x1:�x2:L[x3 :=M3])M1 M2
and so on. The manipulation made explicit by our(C) rule is implicit in Nederpelt’s rule,
appearing only when necessary for a beta-like contraction to occur, but Nederpelt does not
address all of call-by-need reduction, and some massaging of,! is necessary to capture
reduction by(A) as well (Maraist, 1997).

On types and logic.It is straightforward to assign simple types to call-by-need terms; in
addition to the usual rules for terms we have� `M : A �; x : A ` N : B� ` let x =M in N : B Let :
It is easy to verify that call-by-need reduction satisfies the subject reduction property, and it
is also clear that this judgement corresponds to the Cut Theorem of the underlying natural
deduction formulation of minimal intuitionistic logic.

In related work with David N. Turner (1995), we have explored the connection between
the typed versions of the call-by-name, call-by-value and call-by-need calculi using linear

37

systems based on the work of Girard (1987), where the use of the structural rules which al-
low copying and discarding of terms is restricted by a special! operator. Girard described
two translations of intuitionistic logic into an intuitionistic fragment of linear logic. The
intuitionistic fragment of linear logic admits a linear lambda calculusin the same man-
ner that the intuitionistic fragment of classical logic is related to thelambda calculus, for
example the systems of Wadler (1993a; 1993b) and Barber (1995). The translations may
be extended to the term level, and in fact one corresponds to call-by-name reduction, and
the other to call-by-value. The former is sound and complete for mappingcall-by-name
reduction sequences into linear lambda sequences; the latter is sound but notcomplete for
mapping call-by-value sequences (Maraistet al., 1995). Both are sound and complete for
the respective notions of standard reduction (Maraist, 1997). Mackie (1994) has shown the
soundness — but not completeness — of these translations into a system based on proof
nets of full (classical) linear logic for both� and� axioms.

To study call-by-need via transformation into a linear system, it is necessary to alter the(V) rule slightly: rather than substituting one use of the bound value at a time, we replace
all occurrences of the bound variable, and discharge the binding:(~V) let x = V inM ! [V=x]M :
This reformulation allows a better fit into the logics — it is just a restricted form of cut
elimination — and can also simplify a number of syntactic results about reduction.

Still, call-by-need does not fit directly into the logical framework. The fragment of call-
by-need without the(G) rule, which is a conservative extension of call-by-value as dis-
cussed above, may be soundly mapped by an extension of the call-by-value translation.
To include the(G) rule, we can take the target of the translations to be not linear logic,
but rather affine logic, which allows arbitrary formulas to be introduced, but not used. This
translation of call-by-need is sound for reduction; the affine lambda calculus also has a rea-
sonable evaluation order under which the translation is sound and complete for standard
reduction.

Jacobs’ decomposition in the model theory of the! operator into separate operators for
each of the two restricted structural operations (1994) suggests another treatment of call-
by-need. In the call-by-name translation, all arguments to functions areexplicitly allowed
to be copied or discarded; in the call-by-value translation, all values have this explicit
allowance. For call-by-need it would be necessary to allow discarding of any function
argument, but copying only of values. In a calculus where the corresponding syntactic
operators enable the structural rules separately, this distinction is possible. Such a hybrid
translation is sound and complete for both reduction and evaluation (Maraist, 1997).

On the relevance of garbage collection.One could question the inclusion of the garbage
collection rule(G) in the basic system: since it is excluded from the standard reduction
relation, it could be accused of irrelevance. Ariola and Felleisen believe thatthe rule should
be optional; because nearly every implementation does include a garbage collector we feel
it is important to include the rule to establish the intuitively obvious results that garbage
collection does not cause evaluation to go wrong (viz.confluence and standardisation).

In a real sense, the(G) rule is exactly the difference between call-by-need and call-by-
value. Reduction inneed is clearly an extension of reduction in the call-by-value calculus.

38

Example 9
A (�v) step (�x:M) V ! [V=x]M
can be expressed by the following sequence ofneed-reductions, where there is one(V)
step for each occurrence ofx in M :(�x:M) V ���!(I) let x = V in M���!(V)! let x = V in [V=x] M���!(G) [V=x] M :
If we exclude the(G) rule and use the alternate version(~V) of (V) discussed above, then
the extension becomes conservative (Maraistet al., 1995): without the(G) rule, we are
thinking more of call-by-value than call-by-name, and so the relevance of(G) to call-by-
need reduction is clear.

Relevance to evaluation, on the other hand, is what one seems to miss. Thefact that
unneeded bindings in the closure may simply be ignored is precisely thereason why there
is no rule(Gs). If we did include a garbage collection rule in7!, we would no longer be
guaranteed that only a single standard redex would be available at any point; we would also
lose the simple and intuitive notion of answers as simply functions under bindings since
such terms might then have a standard redex. The relevance to evaluation lies in reduction
to constants, but since we do not include constants in the core functional system, we cannot
yet see this role. Arguably, the inclusion of the(G) rule but exclusion of constants at this
stage might seem uneven. We have chosen the present formulation based on the overall
importance of the rule, while initially avoiding extensions beyond the core syntax.

On recursion.A shortcoming of our approach is its treatment of recursion. We express re-
cursion with a fixpoint combinator (which is definable since our calculusis untyped). This
agrees with Wadsworth’s original treatment and most subsequent formalisations of call-by-
need, with the notable exception of Launchbury’s natural semantics (1993). However, im-
plementations of lazy functional languages generally express recursion by a back-pointer
in the function graph. The two schemes are equivalent for recursive function definitions
but they have different sharing behaviour in the case of circular data structures. A circular
pointer can allow more efficient sharing in the cases such as (say) the “infinite”list denoted
by the expression letrec xs = (1 + 1) : xs in xs :
Unfortunately, as Ariola and Klop (1994) have discovered, the naı̈ve extension of a system
with let’s to one allowing arbitraryletrec’s will not be confluent.

Ariola and Blom (1997) give a thorough treatment of recursive let-bindings in call-by-
name, call-by-value and call-by-need reduction systems. Their work is based on a theory
cyclic graphs constrained in a way which gives a sensible notion of the scope of bound
variables, which is then related to� reduction and finally constrained to respect sharing of
subterms.

Three earlier approaches toletrec’s in call-by-need and similar calculi are also note-
worthy: Ariola and Felleisen (1994) extend their call-by-need calculus with letrec’s where

39

selection of redexes is restricted by the use of evaluation contexts as we discussed above.
This restriction does allow the extension withletrec’s to be confluent, although as with
their non-recursive system, it is the restrictions to the internals of the reduction axioms
which makes confluence immediate. Turner, Wadler and Mossin (1995) describe avariant
of the call-by-need calculus for an update analysis of Haskell programs. While their cal-
culus does not restrict reduction contexts, it instead allowsletrec’s to bind only a single
identifier to a value, which is a significant restriction on the recursion that can be expressed.
Finally, Rose extended explicit substitutions to explicit cyclicsubstitutions in a�� calcu-
lus (1993). Although his formulation is simpler than Ariola and Felleisen’s extension for
recursion, it is not confluenty, and as his work concerns explicit substitutions rather than
call-by-need, his rules do not guarantee that only values will be duplicated. A number of
the rules do allow duplication of arbitrary terms, and whether one could restrict these rules
to copy only values is an open question.

Acknowledgements.The authors would like to thank Zena Ariola, Matthias Felleisen, John
Field, Jeremy Gibbons, Christian Mossin, Kris Rose, David N. Turner, Karen Wood and a
number of anonymous referees for valuable comments and discussions.

References

Abramsky, S. (1990).The Lazy Lambda Calculus, Chapter 4, pages 65–116. TheUT Year of Pro-
grammingSeries. Addison-Wesley Publishing Company, Inc.

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J. (1990). Explicit substitutions. InProc. 18th
ACM Symposium on Principles of Programming Languages, San Francisco, California. ACM
Press (January).

Ariola, Z. M. and Blom, S. (1997). Cyclic lambda calculi. InProc. Third Int. Sym. on Theoretical
Aspects of Computer Science (TACS’97), Sendai, Japan (September).

Ariola, Z. M. and Felleisen, M. (1994). The call-by-need lambda calculus. Technical Report CIS-
TR-94-23, Department of Computer Science, University of Oregon (October).

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. and Wadler, P. (1995). A call-by-need lambda
calculus. InProc. 22nd Sym. on Principles of Programming Languages, San Francisco, California.
ACM Press (January).

Ariola, Z. M. and Klop, J. W. (1994). Cyclic lambda graph rewriting. In Proc. LICS’94, Eighth IEEE
Symposium on Logic in Computer Science, Paris.

Barber, A. (1995). DILL — dual intuitionistic linear logic.Draft paper, available from the author
(October).

Barendregt, H. (1981).The Lambda Calculus: Its Syntax and Semantics, volume 103 ofStudies in
Logic and the Foundations of Mathematics. North-Holland Publishing Company.

Benaisaissa, Z.-El-A., Lescanne, P. and Rose, K. H. (1996).Modelling sharing and recursion for
weak reduction strategies using explicit substitution. InProc. PLILP’96, Eighth Int. Sym. on
Programming Languages, Implementations, Logics and Programs, Aix-la-Chapelle, Germany
(September).

Church, A. (1941).The Calculi of Lambda Conversion. Princeton University Press, Princeton.y Rose, 1997, private communication of unpublished result attributed to Stefan Blom and Zena
Ariola.

40

Field, J. (1990). On laziness and optimality in lambda interpreters: Tools for specification and anal-
ysis. InProc. 18th ACM Symposium on Principles of Programming Languages, San Francisco,
California. ACM Press (January).

Girard, J.-Y. (1987). Linear logic.Theoretical Computer Science, 50: 1–102.

Hughes, R. J. M. (1983).The Design and Implementation of Programming Languages.Doctoral
Thesis, Programming Research Group, Oxford University.

Jacobs, B. (1994). Semantics of weakening and contraction.Annals of Pure and Applied Logic, 69:
73–106.

Johnsson, T. (1984). Efficient compilation of lazy evaluation. InProceedings of the 1984 ACM SIG-
PLAN Conference on Compiler Construction, New York, ACM (June).

Josephs, M. B. (1989). The semantics of lazy functional languages.Theoretical Computer Science,
68: 105–111.

Koopman, P. J., Jr. and Lee, P. (1989). A fresh look at combinator graph reduction. InProc. SIG-
PLAN’89, ACM Conference on Programming Language Design andImplementation. ACM Press
(June).

Lamping, J. (1990). An algorithm for optimal lambda calculus reduction. InProc. 17th ACM Sympo-
sium on Principles of Programming Languages, San Francisco, California. ACM Press (January).

Launchbury, J. (1993). A natural semantics for lazy evaluation. In Proc. 21st ACM Symposium on
Principles of Programming Languages, Charleston, South Carolina. ACM Press (January).

Lévy, J.-J. (1980). Optimal reductions in the lambda-calculus. InTo H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, J. P. Seldin and J. R. Harding, eds., pages 159–191
Academic Press.

Mackie, I. (1994).The Geometry of Implementation.Doctoral Thesis, Imperial College, London.

Maraist, J., Odersky, M., Turner, D. N. and Wadler, P. (1995). Call-by-name, call-by-value, call-by-
need and the linear lambda calculus. InProc. MFPS’95, Eleventh Conference on the Mathematical
Foundations of Programming Semantics, New Orleans, Louisiana. Elsevier Publishers, Electronic
Notes in Theoretical Computer Science 1 (March).

Maraist, J. (1997).Comparing Reduction Strategies in Resource-Conscious Lambda Calculi. Doc-
toral thesis, University of Karlsruhe.

Maraist, J., Odersky, M. and Wadler, P. (1994). The call-by-need lambda calculus (unabridged).
Technical Report 28/94, Universität Karlsruhe (October).

Maranget, L. (1991). Optimal derivations in weak lambda-calculi and in orthogonal term rewriting
systems. InProc. POPL’91, 19th ACM Symposium on Principles of Programming Languages,
Orlando, Florida, pages 255–269. ACM Press (January).

Moggi, E. (1991). Notions of computation and monads.Information and Computation, 93: 55–92.

Mossin, C., Turner, D. N. and Wadler, P. (1995). Once upon a type. In FPCA’95: Conference on
Functional Programming Languages and Computer Architecture, La Jolla, California. ACM Press
(June).

Ong, C.-H. L. (1988). Fully abstract models of the lazy lambda calculus. InProceedings of the 29th
Symposium on Foundations of Computer Science, pages 368–376. IEEE.

Nederpelt, R. P. (1973).Strong Normalization in a Typed Lambda Calculus with LambdaStructured
Typed. Doctoral thesis, Dept. of Mathematics and Computer Science, Eindhoven University of
Technology.

Peyton Jones, S. L. (1987).The Implementation of Functional Programming Languages. Interna-
tional Series in Computer Science. Prentice Hall.

Peyton Jones, S. L. (1992). Implementing lazy functional languages on stock hardware: the Spineless
Tagless G-machine.Journal of Functional Programming, 2 (2): 127–202 (July).

Plotkin, G. D. (1975). Call-by-name, call-by-value and the� calculus.Theoretical Computer Science,
1: 125–159.

41

Purushothaman, S. and Seaman, J. (1992). An adequate operational semantics of sharing in lazy eval-
uation. InProc. ESOP’92, Fourth European Symposium on Programming, B. Krieg-Brückner, ed-
itor, Lecture Notes in Computer Science 582, pages 435–450, Springer-Verlag, New York (Febru-
ary).

Rose, K. H. (1993). Explicit cyclic substitution. Technical report D-166, Dept. of Computer Science,
University of Copenhagen (DIKU) (March).

Sansom, P. M. and Peyton Jones, S. L. (1995). Time and space profiling for non-strict, higher-order
functional languages. InProc. 22nd Sym. on Principles of Programming Languages, San Fran-
cisco. ACM Press (January).

Turner, D. A. (1979). A new implementation technique for applicative programming languages.Soft-
ware — Practice and Experience, 9 (31–49).

Wadler, P. (1993). A syntax for linear logic. InProc. MFPS’93, Ninth International Conference
on the Mathematical Foundations of Programming Semantics, New Orleans, Louisiana (April).
Springer Verlag, LNCS 802.

Wadler, P. (1993). A taste of linear logic. InProc. Mathematical Foundations of Computer Science,
Gdansk, Poland (August). Springer Verlag, LNCS 711.

Wadsworth, C. P. (1971).Semantics and Pragmatics of the Lambda Calculus. PhD thesis, Oxford
University.

Yoshida, N. (1993). Optimal reduction in weak-lambda-calculus with shared environments. In
FPCA’93: Conference on Functional Programming Languages and Computer Architecture,
Copenhagen, Denmark. ACM Press (June).

42

