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Abstract

We present a calculus that captures the operational sersastticall-by-need. The call-by-need

lambda calculus is confluent, has a notion of standard remycind entails the same observational
equivalence relation as the call-by-name calculus. Theesygan be formulated with or without

explicit let bindings, admits useful notions of marking and developmesntd has a straightforward

operational interpretation.

Introduction

The correspondence between call-by-value lambda calculi and strict funddogalages
(such as the pure subset of Standard ML) is quite good; the correspoatietween call-
by-name lambda calculi and lazy functional languages (such as Miranda or Haskell
not so good. Call-by-name re-evaluates an argument each time it is useshibitpre
expense. Thus, many lazy languages are implemented usimgitHey-needmechanism
proposed by Wadsworth (1971), which overwrites an argument wittaltsavthe first time

it is evaluated, avoiding the need for any subsequent re-evaluatiomgT@©79; Johnsson,
1984; Koopman and Lee, 1989; Peyton Jones, 1992).

Call-by-need reduction implements the observational behaviour of gaiaime in a
way that requires no more substitution steps than call-by-value reduttiseems to give
us something for nothing — the rich equational theory of call-by-naritieout the over-
head incurred by re-evaluating arguments. Yet the resulting gap betweennteptaal
and the implementation calculi can be dangerous since it might lead to prognasfor-
mations that drastically increase the complexity of lazy functional gt In practice,
this discrepancy is dealt with in ad hocmanner. One uses the laws of the call-by-name
lambda calculus as support that the transformations do not alter thengexra program,
and one uses informal reasoning to ensure that the transformations mhcrease the cost
of execution.



However, the reasoning required is more subtle than it may at first afgfmraexample,
in the term

letx =142
inlet f =Ay.z+vy
infy+ry
the variabler appears textually only once, but substituting 2 for z in the body of the
let will causel + 2 to be computed twice rather than once.

Underestimating the difficulty of this problem can be quite hazardoysantice. The
Glasgow Haskell Compiler is written in Haskell, is self-compiled, and esaéxtensive
use of program transformations. In one version of the compiler,soigl transformation
inadvertently introduced a loss of sharing, causing the symbol taltde tebuilteach time
an identifier was looked up. The bug was subtle enough that it was not aautdiprofiling
tools later pinpointed the cause of the slowdown (Sansom and Peyies, k995).

In this paper we present the call-by-need lambda calcilys,. We write “call-by-
need” rather than “lazy” to avoid a name clash with the work of Abramsky@1,98hich
describes call-by-name reduction to weak head-normal form. We present ouusdltu
Section 2, after a review of the call-by-name and call-by-value calculi in@ett

The basic syntactic properties&f;:p are quite satisfying. Reduction Mz, admits an
interesting variation of the usual marking of redexes, which in tuvegithe properties of
finite developments and unique completions. While somewhat techtfiesk properties
are very interesting from the point of view of reduction semantics, aaklenthe proofs
of the other results much easier and more systematic. Reductidp.ip is confluent:
reduction rules may be applied to any part of a term, including under a lapalpd regard-
less of order the same normal form will be reached. Confluence is valuabieofielling
program transformations. We also have a notion of standard evaluatioomputable,
deterministic strategy for choosing redexes which will terminate wlienany reduction
sequence leads to a member of a natural class of answers. This property idevéduab
modelling computation. We discuss all of these properties in Secti@alB:by-need is
observationally equivalent to call-by-name, where the notion of obsenvattaken to be
reducibility to weak head-normal form, as in the lazy lambda calculus of Abkgf1990)
and Ong (1988). A corollary is that Abramsky and Ong’s models are alsodsand ad-
equate for our calculus. We give the details of the relationship betweebycahme and
call-by-need in Section 4. Our calculus is the only one which we know iefgatll of
these properties without considerably sacrificing simplicity.

Our formulation of call-by-need can also be given a natural semanticsastmithe one
proposed for the lazy lambda calculus by Launchbury (1993), as we sh8edtion 5.
There is a close correspondence between our natural semantics and our stadhaetidm
scheme. In Section 6 we show that one can formulate, with or without the use of a
let construct. The reduction rules appear more intuitive iétaconstruct is used, but an
equivalent calculus can be formed without bindings, simply takieigz = M in N) and
(Az.N)M to be indistinguishable.

We consider some of the more common extensions to basic lambda calSeitiion 7.
Finally, in Section 8 we consider the relationship of our calculus torabar of other sys-
tems and concerns. In particular, we consider other formulations of calkeby reduction,
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Syntactic Domains

Variables T,Y, 2

Values V,W = z | Ax.M

Terms LMN := V|MN

Evaluation contexts E = []| EM
Reduction Rule

(8) (Az.M)N — Mz := N]

Fig. 1. The call-by-name lambda calculus.

Syntactic Domains

Variables, values, terms As for call-by-name
Evaluation contexts E == []|EM| AM)E
Reduction Rule

(Bv) Az M)V — Mz:=V]

Fig. 2. The call-by-value lambda calculus.

and stronger notions of reduction such as full laziness and optimal redu@te also dis-
cuss other variations on the bagiaeduction rule, the relationship to classical and linear
logics, and garbage collection. Probably the most serious drawback sfystam is the
lack of a good model for recursion; we include a discussion of workthgroresearchers
on including recursive bindings.

1 Thecall-by-name and call-by-value calculi

Figures 1 and 2 review the call-by-name and call-by-value lambda calautih &alculi
concern classical lambda terms: applications, abstractions and variables ektcont is
a term with a single holg] in it. By C[M] we denote the term that results from replacing
the hole inC| | with M.

The call-by-name calculus (Church, 1941) consists of a single redurtie, 3, which
describes the simplification of the application of an abstraction to arranpirgument.
We define the reduction relatiogﬁ to be thecompatibleclosure of3 under arbitrary

contexts, andm)—» to be the reflexive, transitive closure e(fﬁ» We write M W N

to mean that we havé/ = E[Aq], N = E[A;] and(Aq, Ay) € 3, with YE? as the
reflexive, transitive closure of(ﬁ—)»

The call-by-value calculus (Plotkin, 1975) also consists of a singlenaxsy, which
is like 5 except that applications are contracted only when the argument is a value. We
use the same notation for the relations derived figynas for those derived fromi, and
summarise the general notation below.

Notation. Throughout this article we use the following notational convergjdargely fol-
lowing Barendregt (1981). We use(f\/) to denote the free identifiers in a terid. A
term isclosedif fv (M) = (). We useM = N for syntactic equality of terms (modute-
renaming) and resernvid = N for convertibility by the symmetric closure of reduction (or
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NAME

forexampleM =" N to specify the particular reduction axioms). Following Barendregt,
we work with equivalence classes®@frenameable terms. To avoid name capture problems
in substitutions we assume that the bound and free identifiers ofesetative term and

all its subterms are always distinct. We say that a reduction rel&tisrconfluenif for all

My, My, M> such that

My —» M; and

My —>» M,

we have soméV such thatM/, " N and M, " N. ReductionR is strongly nor-

malisingif no infinite R-reduction sequence exists.

Developments and their finiteneds.the results that follow we will make use of the notion
of call-by-name developments, which we recall presently. The idea istk tndividual
redexes as others are contracted. We can identify redexes by their locatiam avigrm
via paths, strings of symbols which indicate how one “navigatesthftbe top level of

a term into its subterms. We use symbals a2, a1 respectively to indicate the left and
right subterms of an application and the body of an abstraction. We, letange over
paths andF, G range over sets of paths, writifd/, F) suggesting that paths i index
subterms ofl/ which are top-level redexes. We also writé s N where the term in\/
indexed byy is the top-level redex which, when contracted, transfofhsnto V. This
association of terms with sets of paths is intuitive, but unfortugagsluction rules for sets
of paths are rather complicated. One generally moves freely back and forth betaieen p
of a term plus a set of paths on the one hand, and terms where certain redexescated
directly in the writing of the term on the other hand. Barendregiffestthe equivalence
of the two formulations (1981, Chapter 11). We present the syntaxexhettion rules of
the marked call-by-name calculug,,,. in Figure 3. We use the same metanotation for
marked terms as for unmarked terms, except with a'tiakker the letter: hence marked
terms L', M', N' and marked value¥”. A developmenis a reduction sequence which
contracts only marked redexes, that is, offfly) steps. Acompletedevelopment is one
which ends in an unmarked term. We write

VY /
oMy = N

. ! !
a9 . M2 EV—» N2

to indicate that the single-step reduction sequencand multi-step sequeneg contract-
ing marked termd//; to N/ are developments, and

T:M — N

cpl
to indicate that a developmenis complete.

Example 1

Let M' = #(\z.y z z) (](\z.2) u). We have two one-step developments\éf, namely
oM ==y (B(Az.2) u) (P(Az.2) u)

= ((y((r2.2) 0) (A2.2) w)) , {a2, ara})
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Syntactic Domains

Variables T,Y, 2
Values v, w' = z | .M
Terms L' M' N == V' | M N | XxM)N

Reduction Rules
(Bo) P(Az.M)N — Mz = N]
(Br) (A.M)N — Mz := N]

Fig. 3. The marked call-by-name lambda calculls, ;..

Syntactic Domains

Variables z,Y,2
Values V,.W = z | XM
Terms LMN == V|MN|letz=MinN
Reduction Rules
(I (Az.M) N — letz=NinM
(V) letz =V in C[z] — letz =VinC[V]
(C)  (letz=LinM)N S letz=LinMN
(A) lety=(letxz =LinM)inN — letx=Linlety=Min N
(@) letx = Min N - N if x V()

Fig. 4. The call-by-need-calculusAxgeo.

and

oy M — PQz.yzx)u
= ((Az.yzx)u,{e}) .

Both of these developments, when completed, end in the same term:

MlT;l”“"“"

Since developments coincide with, )-reduction, which is strongly normalising and con-
fluent, we have the following result:

Proposition 1

(Barendregt, 1981, Theorem 11.2.25) All call-by-name developmeaftrate, all can be
extended to a complete development, and all complete developments evtartie origin
end in the same term.

2 The call-by-need calculus

Figure 4 details the call-by-need calculuszs,. We augment the term syntax of the
calculus with det-construct. The underlying idea is to represent a reference to a node in a
graph by det-bound identifier. Hence, sharing in a graph corresponds to naming ima ter

The second half of Figure 4 presents reduction rulestfan.
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e Rule(I), “introduction,” introduces &t binding from an application. Given an ap-
plication (Az.M) N, a reducer should construct a copy of the bddywhere all
occurrences of: are replaced by a reference to a single occurrence of the graph of
N. Rule (I) models this behaviour by representing the reference with-hound
name.

e Rule (V), “value,” substitutes a value for one occurrence of a let-bound variable;
hence it expresses dereferencing. Note that since only values are copieds tiere
risk of duplicating work in the form of reductions that should h&een made to a
single, shared expression.

e Rule (C), “commute,” allowslet-bindings to commute with applications, and thus
pulls alet-binding out of the function part of an application.

e Rule(A), “associate,” transforms left-nestéad’s into right-nestedet’s. It is a di-
rected version of the associativity law for the call-by-name monad (Md§§1).

e Rule(@), “garbage collection,” dropslat-binding whose defined variable no longer
appears in the term. Rulg?) is not strictly needed for evaluation (as seen in Sec-
tion 3 where we discuss standard reduction), but it helps to keep teorteish

Clearly, these rules never duplicate a term which is not a value. Furtheyme will show
in Section 4.2 that a term evaluates to an answer in our calculus if and ohbviluates
to an answer in the call-by-namkecalculus. SaveeD fulfills the expectations for what a
call-by-need reduction scheme should provide: no loss of sharing exsigi¢ ivalues, and
observational equivalence to the classical call-by-name calculus.

Definition 2 (Call-by-need reduction)

Let — be the smallest relation that contaifis V, C, A, G) and that is closed under the
implicatonM — N = C[M] — C[N]. As for call-by-name and call-by-value, we
write reduction in a single step as and in zero or more steps as. To distinguish
call-by-need from (say) call-by-name reduction, we write— and ——. To express

reduction according to particular individual rules in a system, we vpicify the rules

similarly, as in? and e We will omit subscripts whenever the context is clear. We

will often omit the Greek letter lambda to reduce clutter, and write (k@aneple)NEED to
refer to either the reduction theohyz, or the collection of terma ygep.

Example 2
Consider the reduction of the terfhx.z ) (Ay.y):
M.z z) (Ayy) —= letz=XIyy — letz=2Ayy

(N v)
inzz in(A\z.2) x

W let x = Ay.y W let x = Ay.y

inletz=ux inletz=ux
inz inx

W I.et.r = A\y.y W Ay.y
inletz=ux

in Ay.y
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Fig. 5. Graphical rendering of Example 2.

Graphically, we have the sequence shown in Figure 5, where we marlotieecarrently
considered the root of the graph with a stay. (

The call-by-need calculus enjoys a number of properties which we summpagisently
and detail over the next few sections.

e The notion of a marked redex can be adapted to call-by-need, and the resolting
tion of developments has the same useful results as in call-by-name ared ail
developments are finite, all can be extended to complete developments, eoa-all
plete developments of a given term and marking end in the same term. kivelies
the notion of a call-by-need marking and verify these results in Section 3

e The call-by-need calculus is confluent. As in the call-by-name and valuensgst
this result follows rather easily from the results on developmentsyeashow in
Section 3.2.

e An answeris a reduction-closed set of terms that we select as an acceptable end
result of a reduction sequence. In call-by-name and value one usually takesxabs
tions as answers; here we admit an abstraction under let-bindings as v&#nA
dard reduction sequence is a subset of a reduction relation with three pexperti
First, every term may have at most one standard redex. Second, no answeaveay
a standard redex. Finally, whenever there is a reduction sequence from &/téo
some answer, there is also a standard reduction sequencéfrtoran answer. We
identify a standard strategy for selecting call-by-need redexes and shovt ftas
these properties in Section 3.3.

e We express the correspondence between call-by-name and call-by-need infterms o
observational equivalences sort of black-box testing. We make this black-box test
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by wrapping both terms in the same context, and checking whether each wrapped
term reduces to an answer,aonvergeslf the two terms exhibit the same behaviour
(i.e. both converge, or both fail to converge) in every fixed situation, thenake t

the terms to be observationally equivalent. Then the relationship o 8hSec-

tion 4 between call-by-name and call-by-need is that their theories of obiseraiat
equivalence are exactly the same.

3 Syntacticissues

Lambda calculi have a number of syntactic properties that are useful irllimgdpro-
gramming languages, as has been demonstrated by their great success in matigling
Iswim, and a host of successor languages. We discuss a number of theseipsadn this
section. Section 3.1 concerns call-by-need developments and their finitengsstion 3.2
we discuss confluence. The confluence property set forth in the ChurcgeiRbsorem
guarantees that reduction steps may occur in any order without changingettelaifi-
nal result, providing a simple model of program transformation amadgiter optimisation.
We discuss evaluation of call-by-need terms in Section 3.3, giving anai@h order that
contracts only one redex at a time, arriving in finitely many steps at an avslenever
possible.

3.1 Marked reduction and developments

We begin with a survey of some technical properties which are centralrtproofs of
confluence and standardisation, and which will also be useful in the corrdspce re-
sults. The material of this section is relevant to the reduction thebcgleby-need, and
is important for the results of later sections, which are arguably oengeneral interest.
However, the reader who is less interested in those details can safelyiskspdtion, and
proceed to Section 3.2.

It is useful to track certain redexes as we contract others. To this emdasleredexes
with tags to distinguish them from other, unmarked redexes. We t@adk C, A) redexes
through reduction sequences with the marked call-by-need calsulus’ of Figures 6
and 7; we do not mark) redexes. This marked system differs in two distinct ways from
more traditional marked systems such as the marked call-by-name calculus.

The first difference allows us to mafk’) steps, many of which could arise from a single
let-binding. Rather than mark the binding, we mark the variable wbosarrence is to be
replaced with the bound value. Since we mark variables rather than terms, st@lace a
restriction on let-bindings where variables are actually marked: in sunchirigs, the bound
term must be a value. That is, in a tefivh,

MEIetm:MginM] s

if we have an occurrence &z within M;, then M, must be a value. Equivalently, we
might mark the binding rather than the variables, and associate withaHerng the subset
of variables which marked reduction would replace; for the summary of thesésawvhich
we present here, the marking of variables is simpler. We denote the satiables which
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Syntax
Values V',\W' =z | Yz | dz. M’
Terms L' M' N'=:=V' | M'N' | leexz=M"in N’
| Y. M') N’
|Azjet z = P'" M’ in N'
‘ C_,,(P/n M/) N/
where in atermet z = M' in N/,
if z e mv(N')
thenM' is a value.
PrefixesP', R’ s=letz=M'in | 22letz = P'" M in
Trivial structural equivalences
Jjegtg =M inN' = letz=M inN'
QM N)y = M N
Top-level contraction
(I) *Az. M"Y N —letz = N'in M
(I) (Az.M')N' —letz =N'in M
(Vo) letz = V' in C'[Ya] —letz =V'inC'[V']
(Vi) letz = V' in C'[x] —letz =V'in C'[V']
(Co) Snt1(P' R'™ M') N S P (&2(R"M')N') n>0
(Ch) (P" M"Y N’ — P’ (M' N')
(Ag) Artllet z = (P R M")in N' — P' (Azletz = (R'™ M')in N')
(A1) letz = (P' M')in N' — P’ (letx = M'in N')
(Gi)letz = M'"inN' - N' xz ¢ fv(N'")

Fig. 6. Syntax and reduction axioms of the marked call-bgehealculusNeep'.

occur marked in a termd/ by mv(M), and refer to a marke@W’) redex to mean a let-
binding of a variable to some variabtevhere at least one occurrencezois marked.

The second variation from simpler marked systems is our treatment ¢€th¢) rules.
Rather than single steps, for these rules we will mark consecutive sequinesexes:
for example we may have tw@') steps which arise from the same binding, although only
one is contractable initially:

(letil'f] = L] in |et.’172 = L2 in M) N
— letxy = Lyin((let zo = Lyin M) N)
— Iet.rl:LlinIetmgngin(MN).
In the marked calculus, we allow both of these bindings to be marked athe time,
distinguishing the number of bindings to be moved at any point:

Co(letzy = Lyinlet zg = Ly in M) N
— letz; =L;in<(letzy = Lyin M) N
— IetmlleinIet.rg:Lgin(MN) .

This extension of simple marks will also require a variation from tisual, rather simple
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Compatible closure

M — N’
.M — dz.N'
M — N’ M — N’
L'M L N M L' >N L
M — N’ M — N’
"Ox.L') M =Y Oz.L') N "Oz.M) L' =" Ox.N') L'
M — N’ o: M —» N
Cugl M 5Ca [ N Copp! [ 5 Cntdleln) N7 )
M — N’ M — N’
letz =L inM —letz =L inN’ letz =M inL —letz =N inL
M = N’

Anjetg =L in M —B2 letg =L in N’
o: M > N’
. A .
Anlet g = M'in [/ =274dUolm) ot o = N in I/
Displacement function

d(letz = (lety=LinM)in N
—lety=Linletz =M inN  n) _

1, if n>0.
d(letz=MinN - N,n) = —1,ifn>0.
d(letz=LinM —letz=LinN,n) = d(M — N,n—1),ifn>0.
d(M — N,n) = 0 , otherwise

Fig. 7. Compatible closure of marked:en reduction.

notion of compatible closure. Consider the term
Ci(letz = (lety = Lin M) in No) N, ,

which has an unmarke@4) redex at positiora:. If this redex is contracted before the
marked top-level step, we must adjust the counter associated with themtarkflect the
“new” binding separatingv, and NV;:

Ci(let z = (let y = Lin M) in Ny) N,
— S2(lety = Linletz = M in Ngy) N,

Were we to leave the counter unadjusted, we would lose confluence of nradkation,
and hence the uniqueness of complete developments as well.

We mark redexes with the four marksY, €= and4=, wherem,n are positive inte-
gers, each mark corresponding to the rule of the given name. We use thexstamtation
for marked call-by-need terms as for marked call-by-name terms. In addiizrconve-
nient to letP’ range over the various marked let-bindings, and let ($2¥)range ovemn
consecutive productions (not necessarily identicalpof

The top-level rules forEED’ reduction are as usual with rules subscripted 0 contracting
marked steps, and rules subscripted 1 contracting unmarked steps. Wertale and
NEED] steps to refer to contraction by any of those respective sets of rules. fpatible
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closure we use thdisplacementunctiond on unmarkedNEED sequences and integers.
Intuitively, d returns the number of top-level let-bindings which are introducedmoved
by a reduction sequence, where the firstested let-bindings are considered top-level. This
added complication in the definition of compatible closure allows marib( reduction
to be confluent.

Confluence of the marked subset is somewhat surprising, as simplyngaikgle re-
dexes aloneif., without the numeric subscripts) is insufficient for the uniquenesult.
Consider a term with two such markeéd) steps,

Aletz = (Plety = (let z = My in M) in M) in M .

If we contract the outer redex first and inner redex second, we have onédaterdpvelop-
ment;

Aletz = (Plety = (let z = My in M) in M) in M
— Alety = (let z = My in My) in (let 2 = M, in M)
— letz=Myinlety = My inletxz = My in My .

But if we contract the inner redex first, we have another complete daveopwith a
different ending:

Aletz = (Plety = (let z = My in M) in M) in M
— Bletz = (letz = Myinlety = My in My) in M
— letz= Myinletz = (lety = My in My) in M3 .

We have a similar problem for gmi) contraction occurring at the binding of &) step. In

Msen We resolve the difficulty by adding a positive integer & A) markings, indicating
how many prefixes should be moved, and defining residuals to considergratixled or
removed by other steps. So in the second sequence above, we will have:

Alet 2 = (Atlet y = (let z = Mg in M) in M) in Ms
— A2ietz = (let z = My inlety = M, in M) in Ms
— letz = MyinAlletz = (lety = M, in M) in Ms
— letz=Myinlety = M, inletx = My in M3 ,

which does end with the same term as the first complete development.

Once again we can move freely between marked terms and sets of paths, with the addi
tional symbolsi1, ¢2 indexing respectively the left and right subchildren of a let-binding
other words, in a ternfet x = M in N, on the pathu we indexM, and with¢2 we index
N. We continue with the notatiofd %> N to index top-level redexes under compatible
closure, and write M’| to refer to the underlying unmarked term;M’ = (M, F) then
we havelM'| = M. Similarly, given a marked reduction sequemncewe refer to the pro-
jection|o’| to mean the reduction sequence between the respective projections. Fieally, w
write e for a zero-length path string of no symbols.

Having established the notion of marking, we can defestduals For a reduction se-
quences : M —» N and a markingF of M, we define the residuals of with respect to

11



o — in symbols we writeF /o — to be the set of residuais such that
o (M,F)—» (N,G)

where|o’| = o. Developments are as before: a development of a ferand marking?

is a reduction sequence beginning frofd, F) which contracts only marked redexes, and
a complete development is one which ends in an unmarked term. Weﬁg{eandc—m)

as before.

Example 3
Let M' = (M, F) = Atlet x = (Atlety = (let z = My in M;) in Ms) in M3. There are
two single-step developments df’, namely

00 : M' — Ailety = (let z = My in M;) in (let £ = M, in Ms)

dev

and

o1: M — A2letz = (let z = My in (lety = M, in My)) in My .

dev

We haveF /oq = {(e, 1)}, andF /o1 = {(¢,2)}. Assuming that thé/; are unmarked, we
have one complete developmentidf,

M’ o letz = Mqin (lety = My in (let z = M in Mj)) .
The main result oonrED-developments is the following theorem:

Theorem 3
All M\yzen developments are finite, and can be extended to a complete development. More-
over, all complete developments of a particular term and marking end irathe term.

Proof
As before, finiteness of developments is equivalent to strong nornialisait marked re-
ductionNEED. The technique is standard, based on a positive integer measure of a deco-
ration of marked terms which is decreased by reduction. We give only a synohtre
proof; full details are available elsewhere (Maraist, 1997).

We construct weighted terms by giving every variable occurranoe¥ 2 a weightof
some positive integer, written’ or Yzi. We let M, N and so forth range over weighted
terms,V range over weighted values, and define the nppriion weighted terms (ignoring
marks) as follows:

'l = i
[Az. M| = [[M]]
[letz = Min NI = 2[[M| +[[N]|
IM NI = 2||M| +2||N]|

A term is said to haveecreasing weighting it satisfies the appropriate condition below
based on its form.

e Alltermsz’ or ¥z’ have decreasing weighting.
e AtermAz. M .has.a decreasing weightingh has a decreasing weighting.
e Aterm!(Az. M) N has decreasing weighting if:

1. Both M andN have decreasing weighting.

12



2. Forallz’ or ¥z# in M, we havei > | N||.
« Other applicationg)/ N) or ©=(M N) have decreasing weighting if boftf and
N have decreasing weighting.
e A (V)-marked bindinglet z = V in M) has decreasing weighting if:
1. BothV andM have decreasing weighting.
2. Forall¥z’ in M, we have > ||V]).

e Otherbindingglet z = M in N) or A= (let z = M in N) have decreasing weighting
if both M and N have decreasing weighting.

We lift marked reduction to weighted terms by just applying the samesrulithout re-
gard for weights. Decreasing weightings have two key properties, dfotvhich can be
shown by a straightforward structural induction. Lidthave decreasing weighting, and let
M e N. Then:

1. ||.M|| > [|N]|, and

2. N has decreasing weighting.

Moreover, every term has a decreasing weighting. To construct a decreasirdingefgr
an arbitrary term, we number its variable occurrences by positive intégensl, number-
ing the right-hand side of an application before the left-hand sidettemtound term of
a let-binding before the body of the binding. Then to a variable benedi we give the
weight f;,

i =1
fn (ZT) 'fnfl s n>1
=0

Then since every term has a decreasing weighting, finiteness follows Frertwb key
properties above.

Extension follows from strong normalisation. Uniquenessvef:ng-normal forms is
implied by confluence oNEED],. Since we already have strong normalisation it suffices
to show weak confluence, which requires only a simple if tedious analysieotlative
positions of redexes. [

Pairing certain paths with numeric indices in markings raises a technica shich
is trivial in the calculi without bindings but which requires mentiogre. In (say) marked
call-by-name reduction, markingsare simply sets of paths; given matched te(is F; )
and(M, F,) we clearly have a correspondence between the markifg wfith all redexes
in either F; or 7, and (M, F, U F»). In X .. this correspondence is no longer trivial,

since the set-theoretic union of two markings does not necessarily poneso any term
M.

Example 4
Let
M =letzg = (letxy = Myinletza = Mo in N)in L |
with 7, = {(¢,1)} andF> = {(¢,2)}. Then there exists termie;, M}’ such that for each

13



i we haveM| = (M, F;), but there is nd such thatV, = (M, F; U F,). Specifically,
we have
M| =(M,F)) = 2tletzy= (letz; = M, inletzy = Myin N)inL
My=(M,F,) = “letzy=(letx; =M inletzs = MsyinN)inL

but since we allow each redex to take no more than one mark (indexed owibgwe
can form no term{(M, F, U Fs).

Rather than simple set unian we instead use a modified relatien\We definay to select
only the largest integer to form a pair with each different path that sairétic unionu
would associate with more than one integer. For fheF, of the above example, we
would haveF; U F, = {(e, 2)}. Formally, we have

Definition 4
Let Fy, F> mark redexes inV/. Then the sef; U F; is defined as:

FiUF,={y:ve AL UF}U{(y,max{i: (y,i) € F1 UF}): (y,n) e F1 UF}
wheremax selects the largest of a finite set of natural numbers.
This relation allows us to prove the following lemma:

Lemma5
Let Fy, F1 mark redexes inM. Then there exists somg such that for any reduction
sequence; which is a complete development@¥/, F;), o; is also a partial development
of (M, G).

Proof
ThisGisjustFuw 7. O

3.2 Confluence

With the results on developments, confluence follows rather easilyfl@mte of the
(I,V,C, A) subset follows immediately from Theorem 3 and Lemma 5.

Lemma 6
Reduction of\ ..., terms by(7, V, C, A) stepsis confluent: i#/ ———=» M; andM ——=» M,
then there exists som¥ such thatV/; ——» N andM; —=» N,
M
NF)F)’]}/ \\RI‘EED
My M,
NEE.D. . . 'N.EED
““
N

We use diagrams like the one above to illustrate asserted condiRedsiction relations
which are assumed for the result are drawn in solid lines, while restucélations pre-
dicted by the result are dotted. On occasion we will also use dashed liteghiight
correspondences by relations other than reduction.

14



Proof

The result follows as in Barendregt's reference (1981, Chapter 11k thatt where in
Barendregt’'s system the union of markings is trivial, here we meistan Lemma 5 to
justify the existence by of a sensible combination of two markings of the same term. The
heart of the proof is the following argument: Given two reduction seqges

op : (M,]:(]) (‘le My and
o1 (M,]:]) (‘le M] ,

we have by Lemma 5 sontesuch that

og (M g) —_—» (Mo,go) and

dev

o1:(M,G) — (Mi,G1) .

dev

Moreover by Theorem 3 the completions of bethando; end in the same term: that is,
we have somé/ such that for both

Since a single reduction step is trivially a complete developmert, dt valid inductive
conclusion that giveiLgy, F) g L, andLy — L, we have somd.; with L, — Ls

andL, —» Ls3; a second induction with this result gives confluencél

Reduction by(I, V, C, A) steps and reduction ky7) steps commute in a specific useful
way:

Lemma 7

LetM TVeA M, andM SN M. Then there exists sonT€ such thati/; NS N
and eitheM, = N or My —7-759 N.

Proof

By structural induction onV/, and an easy examination of the relative positions of the
redexes. []

The above two lemmas are sufficient to imply confluencef@gs, .

Theorem 8
Reduction in\ygrp is confluent:

Proof
Follows from Lemmas 6 and 7 (Barendregt, 1981, Lemma 3.3.5-7).

15



Additional Syntactic Domains

Answers A A; Ax.M | letxz=Min A
Evaluation Contexts E.E; == []|EM |letz=MinE

‘ let z = Eo in E1 [ﬁ]
Standard Reduction Rules

(Is) (Az.M) N — letx=NinM

(Vs) let z = Ay.M in E[z] — letz = Ay.M in E[Ay.M]
(Cs) (letx =Lin A) N — letz=Lin AN

(A;) lety=(letz=LinA)inE[y] — letz=Linlety = Ain E[y]

Fig. 8. Standard call-by-need reduction.

3.3 Standard evaluation

The confluence result shows that different orders of reduction cannotjfeddent normal
forms. It might nonetheless be the case that some reduction sequencesterwith a
normal form while others do not terminate at all. However, the natioreduction can be
restricted to a standard sequence that always reaches an answer if one equabitirige st
term exists.

Figure 8 details our notion of standard reduction. To state the stdmeduction prop-
erty, we first make precise the kind of observations that can be madenatrouprograms.
Following the spirit of Abramsky’s work (1990), we define an olystion to be a reduction
sequence that ends in a function termniEED it makes sense to allow a function term to
be wrapped inet-bindings, since we can remove bindings from positions interfeith
a subsequent application of that function to an argument by( @lijeHence, an answet
is either an abstraction or a let-binding whose body is an answer.

Standard reduction is a restriction of ordinary reduction in that each medex occupy
the hole of an evaluation context. The first two productions foruwatidn contexts in Fig-
ure 8 are just as for the call-by-name calculus. The third productaiesthat evaluation
is possible in the body of t. The final production highlights the call-by-need aspect of
the strategy. It says that a definition should be evaluated if the deafioéel is demanded
(i.e., it appears in evaluation position itself). The second evaluation xoint¢his form is
the key; evaluation contexts reveal demand for one branch of this tethelyther.

The restriction to evaluation contexts for redex selection does nasély make call-by-
need reduction deterministic. For instance,

letx =Vyinlety=Viinzy

has bothet’s in evaluation position, and hence would admit either the subistitutf V4

for z or the substitution o/ for y. For the former contraction we havg[Ag] —o [Af]
whereEy = [] andA is the entire term; for the latter we have evaluation conflextz =

Vo in[]) and contractunflet y = V; in z y). We arrive at a deterministic standard reduction
by specialising reduction rules to those shown in the second half ofré&i§. Note the
use of evaluation contexts within these rules: evaluation contessrithe demand within
redexes as well as within the contexts surrounding them.

Definition 9 (Call-by-need evaluation)
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Let — be the smallest relation that contaifis, Vs, Cs, A5) and that is closed under the
implicaton M/ — N = E[M] — E[N]. As usual we write— for the reflexive,
transitive closure of», and refer to reduction by specific rules by writing the name of the
rule below the arrow.

Theorem 10
The relation— is a standard reduction relation fdgzzp: for all termsAZ and answersd,
the following three conditions hold.

¢ (Unigueness) Exactly one of the following is true:

1. M is an answer.
2. We have some evaluation contéxtindz € fv(M) such thatM = E[z].
3. We have some evaluation contéxtand top-level standard redex such that
M = E[A].
e (Soundness) M +—» A thenM — A.
e (Completeness) I —» A then there exists some answhy such thatM —» Aq.

Proof

Uniqueness of evaluation contexts follows by an easy structural iruoti M. Sound-
ness is trivial, as all» steps are alse» steps. For completeness the technique is as
in Barendregt's result for call-by-name (19811.4). We define aimternal redex to be
any(1,V,C, A) step which is not standard, and refer to such a contraction witlsince

we do not mark G) steps, we treat them separately. Each of the following properties can
be shown by a tedious but conceptually simple case analysis:

e If M — AthenlM is also an answer.

e If o : M - NygandM -5 Ny, both by internal steps, then every redexifv is
also internal.

o If M X Nisinternal andV — Ny, thenM has a standard redex.

o If 0 : M — Ny isinternalandV +% Ny, theny/o contains a single element which
is also the standard redex .

From these properties and Lemma 5, we can use the finiteness of develepeseiiitin
Theorem 3 to deduce that arbitrafy, V, C, A) sequences can be reordered as standard
steps followed by internal steps,

o |f M m)—» N, then there exists somd, such thatM s M, —» N.

In fact the use of Theorem 3 here and in the above steps is essential; i beuery dif-
ficult to make these arguments directly, without using developmerdsedder, a separate
analysis shows that the following statement holds as well:

o |f M W N —» A, then there exists some answhy such thatM —» Ag.

It is clear that(G) steps preserve answers, and so completeness follows by induction on
the internal steps leading to the standard sequence which terminates in am.arlsiv
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4 Call-by-need and call-by-name

The call-by-need calculus is confluent and has a standard reduction order, g s

the least, a workable calculus by itself. Still we have yet to exploeerélationship be-
tweenAygsn andAyaus. The conversion theoriesygs, and=y.ux are clearly different —
otherwise there would be little point in studying call-by-needayss! In this section we
will demonstrate the exact difference between these calling conventionsegif@in Sec-
tion 4.1 with the maph which maps call-by-need terms to call-by-name terms by simply
substituting all let-bound terms for the bound variables. Werusz give a rigorous com-
parison of their reduction relations in Section 4.2; in Section 4.3 we&/she coincidence

of the observational equivalence relations over the common term language.

4.1 Relating the terms

The following map formalises the intuitive relationship between bgthame and call-by-
need terms.

Definition 11 (Let contraction magp)
We define the map from (marked) call-by-need terms to (marked) call-by-name terms as
follows:

CUrh = T
Az M)" = Az M™
(M N = M"ND
(letz=MinN)" = NMz:=M"
Mz M) Y = Bae.My N

For terms decorated with other redex markers, we simply drop the markeramslate
according to the above rules.

Example 5
Let
My = ()\TT) ()\y.let 20 = (Iet z1 = Nipin N2) in Nq)
— letx = (/\ylet zZ0 = (|et z21 :N] in Nz) in Ng) inz EM]
— )\y.let zZ0 = (Iet z1 = Niin N2) in N3 = M, .
Then
M = (Az.z) My.N{zo == (N§'[z1 := NI")))
MM = MY = \y.NJ[z:= (N2 := NM))] .
Lemma 12

Let M, N € NEED, Where
1. (M[z := N))" = MMz := N"].

2. 1t VD N thenm® = N
3. M is an answer if and only i/ ™ = Az. N.

18



Proof

All three clauses are straightforward: The first clause follows byagitforward induc-
tion on the structure a#/; the second, by inspection of the individual rules, and structural
induction to find the redex contracted id; and the third by the obvious structural induc-
tion. [

Note that we write, for example,F as a shorthand foryyo : 70 € F}. We now extend
the maprh to paths with respect to the term which the path indexes.

Definition 13 (h-images of markings with respect to terms)

Let F index (I)-redexes inM ¢ NEED, where(M,F)" = (M™,G) for some seig
marking (3)-redexes. Then we define thieimage of F with respect toM to beg, in
symbols]—‘[% = G. We will write the h-image of a single path to mean simply the

image of the singleton set containing just that phm,,y[””M] = {V}FM]'

Example 6
Taking M, as in Example 5, we have
{Hwy = {2
th
fazni}y,, = {}

TakingN = let z = ((Ay.y) (Az.z)) in ((x N1) (x N2)), we have

= =-; ===

)
{z_}F’N] = {ai@1, @2a1

The following lemma explicitly justifies what might otherwise appieene an abuse of the
notation. Sinceh-images of(V, C, A, G)-equal terms are identical, we can associate the
m-image of a path from either term with thieimage of either term to produce the same
valid member ofNaMmE’,

Lemma 14 N
Letmr V=YD N et F index (I)-redexes inV and letG = F{},. Then(M™,G) is a

marked call-by-name term, ad/™, G) = (N™, G)

Proof
Trivial, since by Lemma 12.(2) we havg™ = N™. [

4-2 Relating reduction

In this section we study the relationship betweereD reduction andNAME reduction.
We will begin with some basic results about the operator, inclutirgsoundness af for
mapping multi-stepNEED reduction sequences to multi-stsaME reduction sequences.
By soundness we mean just thiapreserves reduction sequencesiif ——» N, then
M™ ——» N as well.

Completeness is more tricky for two reasons: first, reductiongap may “overshoot”
reduction inNAME. For example, we can consider the term

M=Mz.faxx)({II),
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L Lh

letz=IIinfzxx fFIInII
(Mz.frxzx)(lety=Tiny) Ae.fxax)l
letz=(lety=1Iiny)infzxx fIlI

Table 1.Possible() stepsM " LfromM = (Ae.f zx) (I ).

wherel = Az.z. In NAME we have
Ne.fzax)(I1)
- fUID(II
- fII
= N .

But for all L whereM ——» L, we do not necessarily haie® = N; the strongest

NEED

statement we can make about thés@/, N is that we will havel. ™ "=* N. Table 1 shows

the possible results dff) stepsi/ " L; we do not considefV, C, A, G) contraction

since (as we show below) they preservémages. This difficulty is easily overcome: we
simple relax the statement of the completeness result to allow such ogérghesuch
behaviour is exactly what one would expect from introducing shareebgurbssions into a
compatibly-closed reduction relation.

The second complication arises in finding redexesNeaD term M which correspond
to each redex in thé-image of al/: in some cases, there may be no corresponding redex
in the original term. For example, in the terbd = let x = I in z y, there is no readily
markable redex corresponding to the one contracteti/ih = I y —— y. The only
redex inM is a(V') redex, which again does not vary thémage. Moreover, other sorts
of redex inNEED terms can interfere similarly. Our solution to this problem is tomalise
terms with respect to théV, C, A, G) rules: then we can always associate redexes in a
M-image with a redex — obviously @) redex — in the original term. After establishing
these preliminary results, the completeness result follows naturally.

Outline of the resultsThe behaviour okEED reduction sequences undkis straightfor-
ward, and leads easily to the soundness resultin Lemma 16. For compléténeasier to
work in NEED terms which have n¢V, C, A, G) redexes. We first establish that all terms
do indeed have uniqug’, C, A, G)-normal forms, and give a grammar corresponding to
these forms. We link reduction ofeeD terms in general tqV, C, A, G)-normalisation
by Corollary 22, and link reduction dfV’, C, A, G)-normalNEED terms to(3)-reduction

of NAME terms through Corollary 26. These results lead to the completeness emgum
which we give as Lemma 27. The soundness and completeness propertiesiaaised

as Proposition 28. We then extend the equivalence results to convergemodgi@ 30)
and observational equivalence (Theorem 32).

Technically, the soundness and completeness results rely in an essential thaynon
tion of developments. What we actually show for soundness is that leaetion preserves
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complete developments: if is a complete development of a markedeD term (M, F)
ending inN, then the completsAME development of they image of(M, F) is N™. For
completeness we show that a completevE development corresponds to a complete
NEED development whosé-image is again a completeaME development; o will be a
partial development of the redexes marked at the beginning of

For soundness we need two lemmas. Lemma 12.2 tells ugith&t A, G) steps pre-
serverh-images; the following result treafg) steps.

Lemma 15

Let M (—j)> N be ankeD step. Ther(M, {y})" —p N™.

Proof

By structural induction o/ . All of the cases are immediate from the induction hypothesis
exceptwhenV/ = (letz = My in M;). Then we have two cases, depending on the location
of the redex.

1. v = 06. ThenMy % Ny, N = (let = Ny in M) andN™ = M [z := N']. By
the induction hypothesis we have

(Mo, {01)" —p NG,

cpl
or in other words

(Mo, {6})" g NI € NAME .

Since marked call-by-name reduction is substitutive, we lrasech that

o (M {y)" = MMz = (Mg, {6}))"] ——» Mz :=N|=N ,

NAME

and sinceM|", Nf" ¢ NamE and unmarked, so i&, ands is in fact a complete
development.

2. v = 0. ThenM; % Ny, N = let 2 = My in N; andN™ = N[z := M. The
result is largely as in the previous subcase. By the induction hypetiveshave

(M, {o1)" o N

cpl
or in other words

(M, {6})" o N e NAME .

Again by substitutivity of marked call-by-name reduction, we hasich that

o (M AyN" = M1z := (Mo, {81)"] e Mi'le == M{]= N

NAMEq

and once again sinde{", N{" ¢ NamME and unmarked, so &, and we have that
is a complete development.

O

Corollary 16 (Soundness afi for reduction)
Let M, N € NEED With M ——» N.ThenM™ ——» N™.

NEED NAME

Proof
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Syntactic Domains

Applicable Terms H:=V|HM
Values V i=XeM |z
Terms LM,N =V |letz=HMinM|HM

where inaterm(letx = H My in M), z € fv(M;)

Fig. 9.(V, C, A, G)-normalNEED terms.

By induction on the length of the reduction sequence, with Lemma 122y, C, A, G)
steps and Lemma 15 f¢¥) steps. [

For completeness we will use the subsetNnafED terms shown in Figure 9. In fact
we will show in the next lemma that this subset identifies NieeD terms which are in
(V,C, A, G)-normal form. We letl,, M, N range over these terms.

Lemma 17
Let M be as described in the figure.

1. M is aNEED term.
2. Moreover, aterml/ e NEED isin (V,C, A, G)-normal form if and only if it can be
expressed as some tern.

Proof

The first clause is trivial. For the second clause, it is clear that every idrinas no
(V,C, A, G)-redexes. For the converse, we consider structural inductiqivVofi, A, G)-
normal forms, and show that they are indeed equivalent to somelter@nly applications
and let-bindings are interesting; other term-forms are trivial.

1. LetM = My My be a(V,C, A, G)-normal form. By the induction hypothesis, each
M; is equivalent to soméZ;. Moreover, forM not to be a(C)-normal form, M,
cannot be a let-binding, only @, C, A, G)-normal value or application: in other
words, it must be som#&, and so we havé/ = H M;.

2. LetM = letx = My in M, be a(V,C, A, G)-normal form. By the induction hy-
pothesis, again eadl; is equivalent to somé/;, and we clearly have < fv(M;).
For M not to be a top-levelV, A)-redex, we must have thadt, is neither a value
nor another let-binding, only &/, C, A, G)-normal application: in other words, it
must be soméH N), and so we havél =letz = (H N) in M.

O

Definition 18 (V, C, A, G)-normalization relation)

For termsM, N € NEED, we write M VOAGT Nif M WoAG” N andN isa
(V,C, A, G)-normal form.

The following three technical lemmas follow from the technical issues &taildin the
proof of Theorem 3.

Lemma 19

For all M ¢ NEED there exists a uniqud’ such that\/ WEAGTT N.
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Proof

We modify the argument for the finiteness of call-by-need developmemtsTheorem 3.
We use the same notion of weighted term and norm as above, but we takerardif
definition of decreasing weighting:

All free variablesz? or Y2 have decreasing weighting.

An abstraction\z. M has a decreasing weightingif has a decreasing weighting.
An application' (M N) has decreasing weighting if bofif and N have decreasing
weighting.

Abinding (let z = M in N) or 2= (let = M in N) has decreasing weighting if:
1. BothM andN have decreasing weighting.

2. Forallz’ or Ya' in M, we havei > ||N||.

The idea is that we track all let-bindings, but we do not ever create anyonew, since

we are not interested ifY) steps. By manual analysis of the various combinations we can
show that(V, C, A, G) reduction — marked or unmarked — of a term with decreasing
weighting both strictly decreases the norm and retains a decreasing wgighiincan
give any term a decreasing weighting with the same algorithm as above, adtthng
normalisation follows. [

Lemma 20

Leto : Lo m Ly, (Lo, F) ¢ M whereF marks(I) steps, and tak& where

Proof

Foro a(V, C, A) step the result is immediate from Theorem 3. Otherwise f@# astep
we have the result by induction on the sizeZofwith a simple comparison of the relative
positions of the redexes at each stefb.]

Lemma 21

Let L V.E AT — L, M Ve AT M and letF index (I)-redexes inL such that

o:(L,F) *)M ThenL ——» M.

NEED

Proof
We strengthen the obvious fact that"™ 7. We fix r as someV, C, A, G)-reduction

sequence frond to L; then by induction on the length af applying Lemma 20 at each
step, we have a common reductiofind A/, which by Lemma 19 reduces fd. [

The condition guaranteed by the next result is stronger than just emafiufor(7) steps:
confluence tells us only that there exists soMeuch that both. and M reduce toN.
This lemma asserts that thié is in fact equivalent td\/.

Corollary 22
Let L (VOAG) T L, M (VOAG) M andL i M. ThenL e M.
Proof

If L —— Misa(V,C, A,G)-step, then the result is trivial since we have unique normal
forms: thusL = M. Otherwise, the result follows from the above lemma since theesing!

step can be viewed as the complete development of a gifigledex. [
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Lemma 23
Let M be a(V, C, A, G)-normalNeEeD term whereM ™ = N e namE, and lety index a
(B)-redexinN. Then there exists sondéndexing an(/)-redex inM such thaty e {(S}P"M].

Proof

By induction on the structure of the terid. When)/ is an application or abstraction the
result follows directly from the induction hypothesis. Fdr = let 2 = H M, in M,, we
distinguish between two possibilities: whether the marked redéx originates in)M; or

in M. The distinction is made by the following technical criterion: do éhexisty, and
71 such thaty = vy, and M|, = = ? In other words, in indexing/." by ~, do we run
into a reference to the let-bound variable somewhere along the irglpaih?

e Suchny, v, exist.Then the result follows by induction o/ M;) and-y;.

e No suchyg, v, exist.Then clearly we have sondesuch that\,|s is an application
V N and 63”22 = ~. Moreover,VV must be an abstraction and not a variable: if it
were a variable, and fa¥/ to have a redex at, then it would be necessary that the
variable be let-bound to an abstraction, which is impossibl¢iby:normalisation.
We also have thal’ is not a let-binding, sincé/ is (C)-normal. Sos does in fact
mark a redex in\/.

O

Corollary 24
Let M be a(V, C, A, G)-normalNEED term whereM™ = N ¢ NamE, and letF index
(B)-redexes inN. Then there exists somg indexing (7)-redexes inM such thatF C

A
{9}
Proof

This G is just the union of the individual corresponding redexes for evegymber ofF
predicted by Lemma 23 above.[]

The main lemma of this section follows:

Lemma 25

Let L be a(V, C, A, G)-normalNEED term, and letM, N € NAME where
oo M ﬁ) N .
oM m

Then there exists som@, C, A, G)-normal NEED term L, such thatl, ——» L, and

,L. e NEED »390
I L
t

NAME -NAME
- ;
M NAME N

Proof
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[Given] NAME

Fig. 10. Reasoning for the proof of Lemma 25. The numbers irasgbrackets refer to the sentence
in the proof where the particular link is established. Exaelpere explicitly indicated, all
(complete) developments avd ME sequences.

MSince M = N in asingle stepgy may be viewed as a complete development of
that single redex?!Then by Proposition 1, we have somé, ¢ NAME such thatr :

(L™, v/o1) ot Mo andN —» M. 3By Lemma 24 we have some markiggf L such

thaty/oy C g[”‘m. [*lWe takeN, to be the result of the complete developmentoby
the (I)-redexes marked ig, which is also unique (by Theorem 3), and which has some
(V, A, C,G)-normal formL, (by Lemma 19)/°!Since we can consider only markén)

steps, by Lemma 21, we hayé, G)" T LY as well.l’!Sincey/o, C g[”‘m, Tisa

partial development ofZ, G)™ which can be extended again by finiteness of developments
for call-by-name to a complete development endingjn " So since developments can be
projected to sequences in the unmarked calculi, we have thattbgth—» Ny . —» Lo

NEED

andN ——» M, ———» L. The reasoning is summarised in Figure 10, which refers to

NAME NAME

the sentence numbering.[]

Corollary 26

Let L be a(V, C, A, G)-normalNEED term, and letM, N e NAME whereM ——» L™
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and M ———» N. Then there exists som@, C, A, G)-normal NEED term L, such that

_ NAME -
L———» LoandN — —» L

NEED NAME
L gppn =3Lo
7 7 h
L Lt
t
NAME ‘NAME
M NAME N

Proof
By the obvious induction using Lemma 25 at each stepl

Lemma 27 (Completenessffor reduction with overshooting)
Let M e NEED andNy € NAME whereM™ ——» N,. Then there exists SOmé € NEED

NAME

such that/ ——» N andN; ——s N™.

NEED NAME

Proof

Follows immediately from Corollary 26 by considering tfié C, A, G)-normal formsM
and N of M and N, respectively, which exist and are unique by Lemma 19; we have
M ——» N by Corollary 22. [

NEED

We can now prove the main equivalence result between call-by-name and calktdy-n
reduction.

Proposition 28 (Equivalence of call-by-name and call-by-need redhictio
The functionh is sound and complete for mappings\@fME reduction sequencesKEED
reduction sequences, wheveED sequences are allowed to “overshoefME results:

M —NEED N Moevveoennnns NEED .. ... 3N
ph. . NAME b M NAME A NAME A

Proof
By Lemmas 16 and 27. [

The convergenceelations!} are defined in terms of whether the respective reduction
relations lead from a term to a result, but do not consider the particedaitr

Definition 29 (Convergence relations)
Let M € NAME andN € NEED.

1. We say thatl/ converges in the call-by-name calculus,Mdr {}yaue, €Xactly when
we have some abstractiom. M, such thatM ———» Az.M,.

NAME
2. We say thafV converges in the call-by-need calculus Mo} yxxp, €Xxactly when we

have some call-by-need answéisuch thath/ ———» A.

Example 7
LetQ = (\z.x ) Az.z z), I = (\y.y) andK = (Azw.z). ThenK I Q {yaue, SINCE
KIQ = (Azw.z) I Q
o (Aw.T) Q
3

NAME
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But adopting the convergence notation for call-by-value, we HéaveQ ..., since

KIQ —— (Qwl)Q

VAL

—  (Aw.l) Q

VAL

and so on.

Proposition 28 gives us a straightforward relationship between thetmvergence rela-
tions:

Corollary 30 (Convergence in call-by-name and call-by-need)
Forall M € Aygep,
M Uyeen  ifandonly if MM Yy

Proof
By Proposition 28 and Lemma 12.(3).[]

4-3 Relating observational equivalences

Observational equivalence is the coarsest equivalence relation over termslitblétis-
guishes between terms with different observational behaviour. Formally

Definition 31 (Observational equivalence relations)

Two terms M, N of a languagel are observationally equivaleninder a convergence
theory| g, written M = N, if and only if for all £L-contextsC such thaC[M] andC[N]
are closed,

C[M] g ifandonlyif C[N] g

Example 8
It is trivially true that all reduction-related terms of the calculi we ddes are observa-
tionally equivalent: ifL, —» L; andC[Lo] — Ay, then clearlyC[Lq] —» C[L,], and

e By confluence there is som¥, such thatr : Ay —» M, andC[L;] = M,.
e By the first itemised property in the proof of 10 and}, must also be an answer.

soC[Lq] |} as well.

The converse is simpler; £, — L, andC[L,] — Ag, thenC[Lg] — C[L1] = Ao
as well. So for exampldf I 2 =y, I. TakingC = [] itis clear thati' I Q %y, I, but
a simple structural induction reveals thatl Q =, Q.

Corollary 30 implies thabzzp is a conservative observational extension\@fyx:

Theorem 32 (Observational equivalences in call-by-name and call-by-need)
The observational equivalence theories)\af .z and A\ygep coincide onAyayg. For all
termsM, N € Ayaug,

M Z,eg N ifandonlyif M =g N .

Proof
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“=" AssumeM =,z N and letC be aygsp-context such tha®[M] andC[N] are
closed. LetC# result fromC by eliminating alllet's in C' using rule(I) repeatedly in
reverse. Then

C[M] Yneen
& O#[M] Unen sinceC#[M] "=" C[M]
& C#[M] Unaue by Corollary 30, sincéC#[M])" = C#[M]
& C#[N] dyaue sinceM = um N
& C[N] e by the reverse argument on Corollary 30

“ <" Symmetrically, withC instead ofC#, and leaving out the first step in the equivalence
chain. [

Corollary 33
The ruleg is an observational equivalencelggy: For all M, N € Ayggp,

(M. M) N Sy [M/z]N .

Proof
Let M, N ¢ Aymen. Let My, Ny be the correspondindiy,us-terms that result from elimi-
nating alllet’s in M, N by performing(I) reductions in reverse. Then we have\ip,,:

where ‘2" follows from Theorem 32. [

5 Natural semantics

This section presents an operational semantics for call-by-need in the regarahtics
style of Plotkin and Kahn, similar to one given by Launchbury (1998 natural seman-
tics is closely related to the standard reduction order we presented above.

A heapabstracts the state of the store at a point in the computation. Itsterafi a
sequence of pairs binding variables to terms,

."L‘ll—)Ml,...,fITnl—)Mn.

The order of the sequence of bindings is significant: all free variablestefm must be
bound to the left of itj.e. a term M; may contain as free variables onty,--- ,z; ;..
Furthermore, all variables bound by the heap must be distinct. Thiretpeabove is well-
formed if f'v(M;) C {z1,...,z;_1} for eachi in the rangel < i < n, and all thez; are
distinct. Let®, ¥, Y range over heaps. # is the heap; — My, ..., z, — M,, define
var§®) = {z1,...,z,}. Aconfiguration pairs a heap with a term, where the free variables
of the term are bound by the heap. Thids M is well-formed if @ is well-formed and
fv(M) C varg®). The operation of evaluation takes configurations into configurations.
The term of the final configuration is always a value. Thus evaluatiorejmggts take the
form (@) M | (@) V.

The rules defining evaluation are given in Figure 11. There are thres, ffiok identifiers,
abstractions and applications.
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(@) M Y () V

b G oo i e J (0, s 5V, 1)V

Abs

(@) Az. N | (®) A\z. N

A ()L | (¥)Az. N (P, 2’ — M) [z'/z]N § (T)V z' fresh
pp LMy (D V

Fig. 11. Operational semantics of call-by-need lambdautasc

e Abstractions are trivial. As abstractions are already values, the heapustéfanged
and the abstraction is returned.

e Applications are straightforward. We evaluate the function to yidéthebda abstrac-
tion, extend the heap so that the the bound variable of the abstrextounind to the
argument, and then evaluate the body of the abstraction. In thisafuie,a new
name not appearing iff or N. The renaming guarantees that each identifier in the
heap is unique.

¢ Variables seem more subtle, but the basic idea is straightforward: dié¢hfnterm
bound to the variable in the heap, evaluate the term, then update theoh®ag the
variable to the resulting value. Some care is required to ensure thagdiperdmains
well-formed. The original heap is partitioned info = — M, Y. Since the heap is
well-formed, only® is required to evaluat&/. Evaluation yields a new heapand
valueV. The new hea@ will differ from the old heap® in two ways: bindings may
be updated (by Var) and bindings may be added (by App). The free variablés o
are bound by¥, so to ensure the heap stays well-formed, the final heap has the form
¥, z — V, Y. Note that this last statement implies that any new bindings added into
¥ will use fresh variables which are not also usedin

A semantics ofet terms can be derived from the above rules: the semantits af =
M in N is identical to the semantics 6kz. N) M.

As one would expect, evaluation uses only well-formed configuratems evaluation

only extends the heap.

Lemma 34
Given an evaluation tree with ro¢®) M || (¥) V, if (®) M is well-formed then every
configuration in the tree is well-formed, and furthermore V&)sC var ).

Thanks to the care taken to preserve the ordering of heaps, it is possillaw a

close correspondence between evaluation and standard reductidnis.ttie heap:; —
My, ..., xn — M,,writelet ® in N for the term

letxy = My in --- letz,, = M,, in N.

Every answerd can be writtedet ¥ in V for some heagl and valuel’. Then a simple
induction on}-derivations yields the following result.

Proposition 35
For all heapsp, ¥, termsM and valued’,

() M |y (P)Vifandonlyiflet @ in M —» let T inV .

NEED
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Syntactic Domains

Variables T,Y, 2
Values Vv, w = z | .M
Terms LMN := V|MN
Answers A A; = Az.M | Az A) M
Evaluation Contexts E,E; = []|EM | (Ax.E)M
| (Az.Folz]) By
General Reduction Rules

(vhH (\z.Clz]) V - (Az.C[V]) V

cY (Az.LYMN - (Az.LN)M

(A4 (Az.L)(A\y.-M)N) — (Ay.(Az.L)M)N

(GY (Az.M) N - M if z o fv(M)

Standard Reduction Rules
(V) (Az.Efz]) (A\y.M) = (Az.E[(Ay.M)]) (Ay.M)
chH (Az.A)MN — (Az.AN)M
(49) (Az.E[z])((A\y.A)N) = (Ay.(Az.E[z])A)N

Fig. 12. The let-less call-by-need calculus.

The semantics given here is similar to that presented by Launchbury (1293ayvan-
tage of our semantics over Launchbury’s is that the form of terms is atdnédnd care is
taken to preserve ordering in the heap. Launchbury uses a non-standtax, $iyrorder
to achieve a closer correspondence between terms and evaluations: in an appifeati
argument to a term must be a variable, and all bound variables must beslynigumed.
Here, general application is supported directly and all renaming occurs as (et ab-
plication rule. It is interesting to note that Launchbury presents amaltige formulation
quite similar to ours, buried in one of his proofs.

An advantage of Launchbury’s semantics over ours is that his copes mong wéhtl
recursion, by the use of multiple, recursikee bindings. An extension of our semantics
to include recursion (Ariola and Felleisen, 1994, for example) woose Ithe ordering
property of the heap, and hence lose the close connection to standardaesl(btdossin
et al, 1995). We discuss other extensions for recursion below.

6 Call-by-need without bindings

In the call-by-name calculus, we have related = = M in N) to ((Az.N) M) by an
explicit reduction rule: but arit-bindings really essential? It turns out that they are not;
we can take the conversion to be a syntactic identity, and thus expelrtigdps from
call-by-need. We call the resulting calculd§,,,, (reading the/ as “let-less”). Its notions
of general and standard reduction are shown in Figure 12. We define conveiges,:
and observational equivalengg .., in the new system as usual.
While M., is perhaps somewhat less intuitive th&gy, its simpler syntax makes
some of the basic (syntactic) results easier to derive. It also allows bettgrarison with
the call-by-name calculus, since no additional syntactic constructsteodiiced.
Clearly, Ay andAf,., are closely related. More precisely, the following theorem states
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that reduction in\yszp can be simulated in’ and that the converse is also true, pro-

NEED?

vided we identify terms that are equal up(t9 introduction.

Proposition 36
Forall M, ¢ Afmm, My € Ayggn,

¢ ¢
NEED NEED
\/10 4>>N0 \/10 ------- »e \0

Proposition 36 can be used to derive the essential syntactic properties,ofrom those
Of Axpen!

Theorem 37
Reduction in\¢

¢ e 1S Church Rosser.

Theorem 38
The relationW is a standard reduction relation faf,. .. For all terms)/ and answers
Ae A

NEED?

e Soundness. If M —» AthenM —» A.
e Completeness. If M —» A then there exists some answég € A, such that
M —» A[).

The let-less calculuaf,,., has close relations to both the call-by-value calciys and
the call-by-name calculus, . Its notion of equality=y. ~— i.e.the least equivalence
relation generated by the reduction rules — fits between those of the othezaiauli,
making\’,,, an extension of,; and\y,y: an extension ok’

NEED *

Theorem 39

D T G VI G W

Proof
Rulesy can be expressed by a serieg bfV, G) steps, as shown in Example 9, so we have
=xw € =x,,, - To show that the inclusion is proper, we taReo be the usual divergent
expression

Q= Avxz) (A\vxz)

and have

(Az.z) (Ayy) ) = (Ay.(Az.z) y) Q
by the(A*) rule; this equality does not hold in call-by-value,sg,, C =

VAL NEED

For the second inclusion, we can see that edgh, reduction rule is an equality iA.
For instance, in the case 0F ¢) we have:

(Ae.Cle) V. =5 [V/2](Clz]) = [V/2](C[V]) =5 (Az.C[V)V .
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The other rules have equally simple translations; the left- and-hight sides of the ax-
ioms always have a commgf)-reduct which can be constructed by contracting the appli-
cations mentioned in the rules, and identifying the two sides baseadnah-)occurrence

of substituted variables in certain subexpressions. Thus we-hgve C =, . For the
proper inclusion, we have the following instancedofvhich is not an equality [ N

Azx)Q = Q,
andso=y; ~C =i, U

As in the calculus with bindings, one can show that the observationaladence theo-
ries of AL, and Ay are identical; the proof is by a simple application of Theorem 32
together with Proposition 36. The observational equivalence theoribstbf\f,., and
Anane are incompatible with the theory fox,+..

Theorem 40
Forall termsM, N € A,

M =i N — M = NEED! N .

Theorem 39 implies that any model of the call-by-name calculus is also a robalgl,,
since it validates all equalities iRf,.,. Theorem 40 implies that any adequate (respec-
tively fully-abstract) model of\,,; is also adequate (fully-abstract) faf,.,, since the
observational equivalence theories of both calculi are the same. For instaeengky
and Ong's adequate model of the lazy lambda calculus (Abramsky, 19900 iaddguate
for A¢,,,.

7 Extensions

The formulation of call-by-need we have reviewed is rather basic, and Eackanber
of common syntactic conveniences, which we consider now. In Section 7.1 neédeo
the algebraic data types which are central to elegance of real functional pgsaa:
tion 7.2 discusses how we can include constants and primitive fussctiiothe calculus.
One also often considers recursive let-bindings; we do not considersiexus detalil
here, but sketch a number of others’ approaches in the conclusion.

7.1 Constructors and selectors

Functional programs rely in an essential way on distinguishable taggedgeshf infor-
mations. The ubiquitous list is one such datatype with two suchteatsrs,Cons and
Nil. The former tag accompanies two items, the head and tail of the list; tee tagf is
unaccompanied.

Of course, these additions can be simulated in the base language via €haoelings,
but a more high-level treatment is often desirable for reasons of batitychnd efficiency.
The syntax and semantics of the extension are shown in Figure 13;iteeS\to abbreviate
many occurrences ¢, andlet 7 = M in N as an abbreviation for

letzy = Myin --- letx,, = M,, in N .
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Syntactic Domains

-

Terms L M,N := - |caseMin(S)

‘ K7 M1 M(ai) ((lj Z 0)
Clauses S n= K &7' M
Answers A n= e | K; M ... M(ai) (a,— > 0)
Evaluation contexts ~ E 5= - | case BEin(S)

Additional Reduction Rules

(1) case K; Min(---, K; ZN, --) = let#=MinN

(VEYy etz =K; MinN — let = M in N[z := K,{]

(A%) case (letz = M in N)in(S) — letz = Mincase Nin(S)
Additional Evaluation Rules

(1) case K; Min(---, K; &N, ---) = let&= MinN

(V) lete = K; M in E[z] — let § = M in (Blz])[z := Kif]
(AF) case (letz = Min A)in (§) — letz = Mincase Ain(§)

Fig. 13. Data constructors and selectors.

In a tagged expression, a tdg; expectsa; component items. We distinguish between
different tags and access their components viase expression. A claus® of a case
expression has the form

M; .

A case expression then consists of one subexpression to be consjulased,series of
clauses of distinct constructors:

Ki €Xry - Tg,.

i

case M in(Sy, Sa, ..., Sp) .

Reduction of the case statement involves matching the constructor aftttezis M/ . Since
we do not want to force the constructor subterms to be evaluatedhmyibire individually
demanded, we create new bindings to the pattern variables {if fherule:

case (K; My -+ My,)in (-, Kizy -+ 2a,.N, )

i

— letzy =M;yin --- letx,, = My, inN .

The (VX)) rule facilitates let-bound constructor expressions, again creatingnigisidor

the subexpressions rather than duplicating them in the substit(tiee separate rulé¥”)

for freely copyable values (abstractions and variables) (&) for constructor terms is
awkward, but avoids the need for separate tags which indicate whethefdtbemsessions

are copyable. One might further refine this scheme by inc:IuaI’(ra(_};7 as a value, and
restricting(V ) to the case where at least one of the subexpressions is not a valuey Finall
we also have a new structural ryld’ ), which allows us to rearrange a let-binding in the
term under examination.

Most other formalisations of call-by-need, including the represemtatiderms for the
STG machine (Peyton Jones, 1992), Launchbury’s natural semantics (lbaupctf93),
and our earlier work on the subject with Ariola and Felleisen (1995)rictstonstructor
subcomponents to either variables or values, and copy the subcomportéetsiite anal-
ogous to(V¥). In our (evaluation) rules, thease expression is both an evaluator of its
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Syntactic Domains
Constants and functions c,p
Values VW = XM | c
Evaluation contexts E = - | pE
Additional Reduction Rules
(8) pc — 6(p,c) d(p,c) defined
Additional Evaluation Rules
(Gs) letz=Minc — ¢
(6s) pe — d(p,c) d(p,c) defined

Fig. 14. Constants and primitive functions.

subterm and a memory allocator for the new let-bound terms. Since t@en&ichine is
intended to directly reflect low-level details of an actual compilation, a nateogonal
design is appropriate. In the STG machinedhsee expression is essentially just a subrou-
tine call to evaluate the subterm, and only case expressions corregpsunchtsubroutine
calls. Likewise, STG let-bindings suggest only memory allocationhenhteap, and no
other construct allocates heap space. Thus it is desirable in the STG machéstritc
the subcomponents to variables, and assume the presence of some preprobé&ds
repeatedly lifts out non-variable subcomponents via let-bound vasabhe other two ap-
proaches follow this implementation philosophy, but for a general aadcthle restriction

is rather artificial.

7.2 Constants and primitive functions

A further aspect of real functional programming languages is the includioonstants and
primitive function in the language. Like constructors and selectonsstemts and prim-
itive functions may simply be Church-encoded, but again at the cost o&bdiyg and
a distortion of the actual effort required in program reduction as comparéuk actual
implementation.

Figure 14 describes the extension of the call-by-need calculus for cemdtatiowing
Plotkin, we add a set of unique names to the set of values, and assuméstkee ez of
some (probably partial) functiof from pairs of these names to names. Weclet range
over these constants, generally usintp refer to constants used as functions. WeAet
range as usual over abstractions possibly under bindings, althoeghgtlt below deals
with observation of constants rather than these “answer” closures. Thuscasskd in
Section 8, garbage collection becomes essential in evaluation to constanfslldiving
result relates reduction to basic elements in call-by-need and in call-by-n&mee3ult is
an easy extension of Proposition 28, and relie$@hto discard unneeded bindings from
around the primitive in the call-by-need sequence.

Corollary 41
For all termsM e A with primitives and constants

M NEED ¢ M NAME c .
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8 Concluding remarks

We conclude with a discussion of our call-by-need calculus in relatiomtoveber of other
systems and notion of reduction.

On other formulations of call-by-needosephs (1989) gives a continuation- and store-
based denotational semantics of lazy evaluation. Purushothaman and Seamaugi{E992
a structured operational semantics of call-by-name PCF with explicit@mvients that
is then shown to be equivalent to a standard denotational semantics folLB@i€h-
bury (1993) presents a system with a simpler operational semantics\aexigiaddition
rules for recursive let-bindings that capture call-by-need sharing i@imaif he key point
about all this work is that while it does provide an operational modeladifby-need, it
does not provide anything like a calculus or a reduction system for ieqa@teasoning.

In work done independently of ours, Ariola and Felleisen proposedniasi calcu-
lus (1994). We have taken the position that call-by-need, in a geneisg s&imould unite
the observational behaviour of call-by-name with the restrictionsapying of call-by-
value. Thus since none of th&, C, A, G) rules copy top-level non-values, and since (as
we see in the next section) they do preserve call-by-name observatienappropriate
to adopt the rules without restriction. Ariola and Felleisen take aomar view of what
one should permit within a reduction relation, and interpret the “needall-by-need lit-
erally. Their system can be characterised as the rel&ligiv;, Cs, A;) compatibly closed
under all contexts. In other words, the restriction to subexprassitich we impose only
in standard reduction rules, they impose universally. Their calculusiegponly “the in-
tentional aspects of modern call-by-need evaluators,” which we find apatepor the
standard reduction relation but too restrictive for the general calcuheir $ystem proves
fewer program transformations as equalities, requiring instead the difficult notion of
observational equivalence. It is interesting to note that Ariola and Befti& summary of
Plotkin’s criteria for the development of calculi to capture languagee@riies (1975) does
note that “the equations of [a] calculus should identify terms that areeiafationally in-
distinguishable’ from each other;” as such we feel that our system moreygladheres to
Plotkin's program. However it should be noted that without theitrietions, confluence
may be lost when extending the system for mutually recursive bisdimgich we address
as a separate point below; this point is certainly one advantage of thaiunlfation. Ariola
and Felleisen’s restriction to the bodies of the general rules does stnesatiméi transition
from general to standard reduction, since one needs only to consider arattaation
of compatible closure, under evaluation rather than arbitrary contextssydtem differs
further from Ariola and Felleisen’s in our inclusion of a rule for bage collection, which
we also discuss separately below.

Ariola and Felleisen also raise the somewhat more practical possibiityheir system
admits easier proofs of the various syntactic properties. Strictly apga#kis claim is not
invalid; their restriction of the general reduction rules allows resoitsertain classes of
term rewriting systems to be applied directly, making confluence immedighile our
results on developments are somewhat less immediate, once proven thenaansy/n-
tactic results are in fact straightforward; the same results on develoiswere also quite
useful in the proofs about the observational equivalence theories, wiéthasriola and

35



Felleisen’s weaker notion of marked redexes an additional layer of diagranmatagion
is necessary. Although we do believe that the technical results we prdsanaahore sys-
tematic technical exposition, this issue is separate from the quedtishich formulation
of the general reduction rules is more appropriate.

On call-by-need and explicit substitutionAt first glance the call-by-need system seems
to be little aside from yet one more formulation of explicit sutogions (Abadiet al., 1990,
for example). However, the assumptions made by explicit sulistitsthemes regarding
what the “expensive” operation is in reduction are different. Explidits$itution schemes
track substitutions through a term, but do not place any restriciionthe duplication
of substitutions. As suggested by their name, the explicit stepsistiipg a substitution
through the structure of a term, plus accounting for the interactiompropagated substi-
tutions with other structures, is the difference with an implicinfiotation. In our call-by-
need scheme, we have no interest in how substitutions move throegérth, but rather
under what circumstances substitutions — implicit or explicit— may lkeated in a term.
A clear advantage of call-by-need over explicit substitutions is sintpjiexplicit substi-
tution schemes have considerably more rules, and correspondinglgemedre difficulty
in establishing its syntactic properties.

Benaisaissa, Lescanne and Rose (1996) have presented a hybrid systenmedrich
porates sharing, explicit substitutions and explicit address refereandsvhich is quite
useful for expressing space complexity. Their system is quite gersrdlcan simulate
ours, as well as a number of other interesting systems, as a subsetdégshut as a
result is a rather large, complex system. The particular calculus whictptiesgnt allows
weak reduction only, but is easily generalised to allow reduction in any xb(Rose,
private communication).

On call-by-need, full laziness and optimal reductigkithough we allow only values to
replace a variable in a substitution, it is not true that only valuesage copied. In the
contraction

M = letz=(Ay.Myyy)inClx]
— letz=Ay.Myyy)inClAy.Myyy ,

the subexpressiofiVfy y y) is obviously not a value, but is nonetheless copied. A num-
ber of issues apply to this situation, but the motivation behindfoumulation is the be-
haviour of graph reduction implementations of lazy functional languagdise style of
the G-machine and its descendants. In these designs, lambda abstraatiesgaral to
subroutines in the machine code. simple addresses which may be copied freely. The
(V) rule is faithful to this design principle: we replace a reference tath a reference to
code which will seek an argumeptand then construct the graph af, y y.

We have explicitly declined certain opportunities for greater sharinghé above ex-
ample, ify does not occur i, then a more space-efficient representatioifo€ould be
written as

N=letf=Myinletx = (A\y.f yy)inClz] .
Rather than reducingy/ to N at runtime, we view the conversion &f to N as appropriate
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to a transformation carried oteforeprogram execution. In particular, the full laziness
transformation enables sharing of such subterms (Wadsworth, 19ghgdp1983).
Even after a full laziness pass, we would still copy the non-véjug y):

let f=Mpinletz = (Ay.f yy) in C[x]
— letf=Myinletx = (Ay.fyy)inClAy.fyy] .

Such expressions are indeed copied in lazy functional graph reduction iepiations,
and we do not view this effect as a shortcoming. Sharing of subtermssadiifsrent
instantiations of bound variables is addressedymalreduction strategies (Lévy, 1980;
Lamping, 1990; Field, 1990; Abaét al, 1990; Maranget, 1991). Although the additional
sharing of those calculi does allow the fewest possible reduction, stépsot clear how
useful optimal reduction is for compilation to efficient low-level code.

Yoshida (1993) presents a weak lambda calculus with explicit envirotsnsénilar to
let constructs, and gives an optimal reduction strategy. Her calculus subseneal of
our reduction rules as structural equivalences. However, due to a difieoénoh of ob-
servation, reduction in this calculus is not equivalent to reduction to vealkl-normal
form.

On call-by-need and generalisations of classiGaleduction. Much work exists in dis-
covering future redexes which are simply blocked by another contractiachwias not
yet occurred. For example, in the term

(Az.\y.L) M N

it is clear that the occurrences gfin L will be replaced byV, but that substitution will
not be possible until we have first replacedith M. Nederpelt proposed a notion of gen-
eraliseds reduction— which allows this contraction to occur at once (Nederpelt, 1973):

()\Tl)\TgL) M1 M2 — ()\TlL[Tg = Mg]) M1
(AZ‘] Al‘zAl‘gL) M] M2 M3 — (AZ‘] /\l'zL[CL'g = Mg]) M] M2
and so on. The manipulation made explicit by 601 rule is implicit in Nederpelt's rule,
appearing only when necessary for a beta-like contraction to occur, but Nedirpsinot

address all of call-by-need reduction, and some massaging «f necessary to capture
reduction by(A) as well (Maraist, 1997).

On types and logiclt is straightforward to assign simple types to call-by-need terms; in
addition to the usual rules for terms we have

r-M:A I'z:A+-N:B

Let .
I'kletz=MinN:B

Itis easy to verify that call-by-need reduction satisfies the subject reduymtiperty, and it
is also clear that this judgement corresponds to the Cut Theorem of tieelyind natural
deduction formulation of minimal intuitionistic logic.

In related work with David N. Turner (1995), we have explored thensmtion between
the typed versions of the call-by-name, call-by-value and call-by-need casing linear
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systems based on the work of Girard (1987), where the use of thetstabrules which al-
low copying and discarding of terms is restricted by a spéalerator. Girard described
two translations of intuitionistic logic into an intuitionistfragment of linear logic. The
intuitionistic fragment of linear logic admits a linear lambda calcuiuthe same man-
ner that the intuitionistic fragment of classical logic is related tolémebda calculus, for
example the systems of Wadler (1993a; 1993b) and Barber (1995). isdations may
be extended to the term level, and in fact one corresponds to call-by-raiuetion, and
the other to call-by-value. The former is sound and complete for mapgtidy-name
reduction sequences into linear lambda sequences; the latter is sound totnpdete for
mapping call-by-value sequences (Maraisal., 1995). Both are sound and complete for
the respective notions of standard reduction (Maraist, 1997). Mac8#{thas shown the
soundness — but not completeness — of these translations into a syasehdn proof
nets of full (classical) linear logic for both andn axioms.

To study call-by-need via transformation into a linear system, it is rsacg$o alter the
(V) rule slightly: rather than substituting one use of the boundevalLa time, we replace
all occurrences of the bound variable, and discharge the binding:

(V) letz=VinM — [V/z]M .

This reformulation allows a better fit into the logics — it is just atrieted form of cut
elimination — and can also simplify a number of syntactic results aboutteh.

Still, call-by-need does not fit directly into the logical frameworkeThagment of call-
by-need without thé@) rule, which is a conservative extension of call-by-value as dis-
cussed above, may be soundly mapped by an extension of the call-by-\aalaktion.

To include the(G) rule, we can take the target of the translations to be not linear logic,
but rather affine logic, which allows arbitrary formulas to be introdybed not used. This
translation of call-by-need is sound for reduction; the affine lambdakslelso has a rea-
sonable evaluation order under which the translation is sound and etanipt standard
reduction.

Jacobs’ decomposition in the model theory of tlaperator into separate operators for
each of the two restricted structural operations (1994) suggests anathnént of call-
by-need. In the call-by-name translation, all arguments to functionsxgiitly allowed
to be copied or discarded; in the call-by-value translation, all values btasg explicit
allowance. For call-by-need it would be necessary to allow discarding of amgtidun
argument, but copying only of values. In a calculus where the correspgrsgintactic
operators enable the structural rules separately, this distinctiors@ipe. Such a hybrid
translation is sound and complete for both reduction and evaluatiora{81at997).

On the relevance of garbage collectio®ne could question the inclusion of the garbage
collection rule(G) in the basic system: since it is excluded from the standard reduction
relation, it could be accused of irrelevance. Ariola and Felleisen believéhatle should
be optional; because nearly every implementation does include a garbagztarole feel
it is important to include the rule to establish the intuitivelyimus results that garbage
collection does not cause evaluation to go wrovig.confluence and standardisation).

In a real sense, th@7) rule is exactly the difference between call-by-need and call-by-
value. Reduction inEED is clearly an extension of reduction in the call-by-value calculus.
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Example 9
A (By) step
Az M)V = [V/xIM
can be expressed by the following sequencsmfp-reductions, where there is of¢’)
step for each occurrence ofin M:
Aze. M)V Nl letx=Vin M

w7 etz =V in|V/z] M

Nl [V/z] M .
If we exclude theG) rule and use the alternate versidn) of (V) discussed above, then
the extension becomes conservative (Marafstl., 1995): without theg/G) rule, we are
thinking more of call-by-value than call-by-name, and so the relevan¢gpfo call-by-
need reduction is clear.

Relevance to evaluation, on the other hand, is what one seems to mis&cT lileat
unneeded bindings in the closure may simply be ignored is precisetgéisen why there
is no rule(G,). If we did include a garbage collection rule+n, we would no longer be
guaranteed that only a single standard redex would be available at anyvp®imould also
lose the simple and intuitive notion of answers as simply funstiamder bindings since
such terms might then have a standard redex. The relevance to evaliegionreduction
to constants, but since we do notinclude constants in the core foatsipstem, we cannot
yet see this role. Arguably, the inclusion of tf@&) rule but exclusion of constants at this
stage might seem uneven. We have chosen the present formulation basedowerall
importance of the rule, while initially avoiding extensions beglidhe core syntax.

On recursion. A shortcoming of our approach is its treatment of recursion. We expeess r
cursion with a fixpoint combinator (which is definable since our calcisusityped). This
agrees with Wadsworth’s original treatment and most subsequent foatiatis of call-by-
need, with the notable exception of Launchbury’s natural semantics Y196@&ever, im-
plementations of lazy functional languages generally express recursiondnkagbinter

in the function graph. The two schemes are equivalent for recursive fundgfinitions
but they have different sharing behaviour in the case of circular datetstes. A circular
pointer can allow more efficient sharing in the cases such as (say) the “infigitdénoted

by the expression

letreczs = (1+1):zsinzs .

Unfortunately, as Ariola and Klop (1994) have discovered, theanaktension of a system
with let’s to one allowing arbitraryetrec’s will not be confluent.

Ariola and Blom (1997) give a thorough treatment of recursive laghigs in call-by-
name, call-by-value and call-by-need reduction systems. Their work is basadh@ory
cyclic graphs constrained in a way which gives a sensible notion ofdbgesof bound
variables, which is then related fbreduction and finally constrained to respect sharing of
subterms.

Three earlier approaches ketrec’s in call-by-need and similar calculi are also note-
worthy: Ariola and Felleisen (1994) extend their call-by-need calcultis ieirec’s where
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selection of redexes is restricted by the use of evaluation contexts aiseusskd above.
This restriction does allow the extension wigtrec’s to be confluent, although as with
their non-recursive system, it is the restrictions to the internfith® reduction axioms
which makes confluence immediate. Turner, Wadler and Mossin (1995) deswabiarat
of the call-by-need calculus for an update analysis of Haskell programde \ieir cal-
culus does not restrict reduction contexts, it instead allerec’s to bind only a single
identifier to a value, which is a significant restriction on the recurdiant¢an be expressed.
Finally, Rose extended explicit substitutions to explicit cyslibstitutions in au calcu-
lus (1993). Although his formulation is simpler than Ariola arell€isen’s extension for
recursion, it is not confluehtand as his work concerns explicit substitutions rather than
call-by-need, his rules do not guarantee that only values will be duplicatadmber of
the rules do allow duplication of arbitrary terms, and whether one cagldlict these rules
to copy only values is an open question.
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